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In this paper, the angular features of the signal and background processes of the associated production of the Higgs 

boson with W-boson are presented. Signal and background processes are generated using the CompHEP, POWHEG and 

PYTHIA generators. Monte Carlo data are processed in ROOT software. We also compared the shape of the distributions of 

kinematic variables obtained from different generators and found that the shape of these distributions is similar for different 

generators. Significant deviation of POWHEG distributions from other generators can be explained by the fact that it uses 
NLO correction while other generators use LO approximation. 
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1. INRTODUCTION 

 
One of the important production mechanism for 

the Higgs bosons in the Standard Model is its 

associated production with the W± -boson, qq̅ →
W±H, where the 𝑊± bosons decay into leptons and 

the Higgs boson decays into a 𝑏𝑏̅ pairs. This work is 

motivated by the fact that observing the decay of the 

Higgs boson into a pair of 𝑏𝑏̅ quarks is a very 

important discovery for particle physics. There are 

various generators for simulating processes used in 

high energy physics to study the properties of 

elementary particles and fundamental interactions. It is 

very useful to compare the results from different event 

generators, and to try to understand the differences. 

The choice of event generators depends on the level of 

agreement of the data obtained from it with the 

experimental data, but when presenting the results of 

the selected event generator, it can be criticized. This 

work was done by using CompHEP [1], PYTHIA [2] 

and POWHEG [3] Monte Carlo event generators, 

which are designed to calculate the total cross sections 
and provide kinematic distributions for processes with 

several particles in the final state. The Leading Order 

(LO) or Next-to-Leading Order (NLO) Parton 

Distribution Functions (PDF) can be used depending 

on the generators. The generated Monte Carlo events 

were analyzed using the ROOT program [4]. 

Comparison of the results obtained from different 

generators are presented. CompHEP starts with the 

Feynman rules for the Lagrangian of the gauge model 

and calculates the matrix element for any process 

defined by the user. CompHEP is able to compute 

basically the lowest order (LO) cross sections and 

distributions with several particles in the final state 

(up to 6-7). It can take into account, all             

quantum chromodynamics (QCD) and electroweak 

(EW) diagrams, masses of fermions and bosons and 

widths of unstable particles.  
The PYTHIA program appeared to solve the 

problem related to drawing strings in proton-proton 

processes. We used the latest version (v8) of the 

PYTHIA program [5]. The working procedure with 
the generator was divided into several stages. The first 

one is the initialization phase. It defines all basic 

characteristics of the future generated process. The 

next step is the generation cycle. At this stage, the 

events that will be generated and analyzed later are set 

up. And at the last stage, after the completion of the 

generation process, we get the result as an event file.  

The main idea in POWHEG is to generate the 

hardest process first. After that the event is feed to any 

shower generator for subsequent, softer radiation. The 

first POWHEG concept was the realization of Z pair 

production in hadronic collisions. Processes such as 

the gluon fusion production of Higgs boson, Drell-

Yan vector boson production, and single-top 

production were later included. POWHEG is 

implemented for generic processes using the 

POWHEG BOX package. It allows automatically 
create own POWHEG implementation for a process 

with given NLO matrix elements. The POWHEG 

BOX is a general computer framework for 

implementing NLO calculations in programs 

according to the POWHEG method. It also provides a 

library where included processes are made available to 

users. It can be connected with all modern Monte 

Carlo shower programs. 

 

2. SIMULATION OF SIGNAL AND 

BACKGROUND SAMPLES 
 

The procedure for generating events in PYTHIA 

is strictly organized: switches and parameters cannot 

be changed during the run, therefore, it is necessary to 

initialize the generation completely before generating 

events. To get the correct results, you need to give a 

fairly accurate recipe for the structure of the run. The 
process of generating events using the PYTHIA 

generator consists of several stages. First, at the 

initialization stage, we select the process which is 

needed. At this stage, you can change the default value 

of the beam energy. After setting the number of 

https://en.wikipedia.org/wiki/QCD
https://en.wikipedia.org/wiki/Fermions
https://en.wikipedia.org/wiki/Bosons
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events, the event generation process starts. At the 

beginning of the generation process information for 

the first event is printed to ensure that everything is 

working as planned. At the last stage, we receive the 

results of the generation as a table for the first event 

and as an LHE or root file that contains information 

about all events.  

The CompHEP package is designed to calculate 

cross sections and generation of hard (basic) processes 

from matrix element (lagrangian) in the lowest order 

of perturbation theory. No higher order correction and 

hadronization are possible. CompHEP is divided into 

two separate parts, symbolic and numerical ones. The 

symbolic program is compiled and conserved in the 

installation area. The numerical binary is designed 

from several libraries and C code generated by the 

symbolic program. The calculation of signal and 
background processes in the program is carried out by 

determining the model of the interaction of elementary 

particles, which is necessary to continue work. The 

first thing user should do is to choose the desired 

model. The procedure for generating events with 

CompHEP was exercised as in [6]. 

The first step in the generation of the code for a 

new process in POWHEG is to create a directory 

under the main POWHEG BOX and to work from 

inside this folder. This directory is called the process 

folder, from where all script files have to be executed. 

For a complete generation process, the basic necessary 

steps are performed as in [7]. 

In this paper, we considered 𝑝𝑝 → 𝑊𝐻 → 𝑙𝜈𝑏𝑏̅, 

as a signal process, 𝑝𝑝 → 𝑊𝑍 → 𝑙𝜈𝑏𝑏̅ and 𝑝𝑝 →
𝑊𝑏𝑏̅ → 𝑙𝜈𝑏𝑏̅ as background processes, where 𝑙 = 𝑒± 

or 𝜇±. The energies of the first and second beams 

(protons) were set to 6500 GeV, i.e. a total energy was 

13 TeV. In all generators, 125 GeV was taken as the 

mass of the Higgs boson. Table 1 illustrates some 

features of the generators used in this work. 

 

Table 1. Main features of the generators for signal process 

 

 CompHEP PYTHIA8 POWHEG 

# event 320000 320000 310000 

Type of calculation LO LO NLO 

Parton-distribution 

function (PDF) 

CTEQ6l1 CTEQ6l1 CTEQ6M 

 

 
  

Fig. 1. Feynman diagrams for WH process at LO (a) and at NLO (b,c) as EW and QCD corrections to the LO   
            respectively. 

 

The LO and some NLO Feynman diagrams for 

the 𝑝𝑝 → 𝑊𝐻 → 𝑙𝜈𝑏𝑏̅ process are shown in Figure 1. 

The difference in transverse momentum distributions 

between the LO and NLO event generators can be 

seen in Figure 2. It should be noted that the 

differences between LO and NLO generators are not 

limited to the difference in the PDFs they use.  

Another difference between them is that at the 

hard scattering level the formers use tree level matrix 

elements while the latter use one loop matrix 

elements. In the case of generating events with NLO 

matrix elements you improve the precision by 

lowering the dependencies of the renormalisation and 

factorization scales. The cross-section in the next to 

leading order approximation can be different from the 
cross-sections in the leading order by up to 30%. 

There are number of background processes that have 

large cross sections. In this work, we propose and use 

some variables (cosθl, cosθW) that will help to solve 

the background dominance problem. 

3. EVENT SELECTION AND DATA 

ANALYSIS 

 
Due to the big amount of background events, the 

search for signal events is complicated. Therefore, the 

choice of kinematic variables is important for the 

signal event selection. Some of the variables are 

determined using an approach that was used in the 

analysis at LEP [8] and in the ATLAS experiment [9]. 

One of these variables is transverse momentum of the 

charged lepton from the W decay (Figure 2). Another 

variable we use is the angle of the charged lepton in W 

rest frame relative to the W direction in WH or 

WZ/ 𝑊𝑏𝑏̅ center of mass system for the signal and 

background processes respectively. To determine this 
angle, we have to transform all momenta from 

laboratory system to the WH center-of-mass frame 

(c.m.f.). Then we rotate the direction of the W-boson 

so that it coincides with the z-direction. Finally, we 

transform momentum of W boson along the z- axis to 

rest frame of W-boson. Since the same variable for 
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other particles of final state (neutrino, b and anti b-

quarks) depends on each other and does not provide 

additional information, we define this variable only 

for the charged lepton. Figure 3a presents the 

comparison of the distributions of cosine of the 

charged lepton decay angle in the W rest frame 

relative to the W direction in the qq̅ c.m.f. and figure 

3b - the cosine of the W-boson polar angle with 

respect to the collision axis in the qq̅ c.m.f. for events 

that are received from POWHEG, PYTHIA8 and 

CompHEP generators. Before creating these plots, we 

select events by applying a cut to some kinematic 

variables. These variables and applied cuts are as 

follows: 

 The transverse momentum of a charged lepton, 

b- and anti b-quarks are required to be greater 

than 25 GeV, and for neutrinos - greater than 20 

GeV. 

 The pseudorapidity of the charged lepton, b- and 

anti-b-quarks should be within [-2.5, +2.5]. 

 The transverse momentum of the W boson must 
be greater than 150 GeV. 

These cuts were selected according to those used 

in the analysis of experimental data [10]. They are 

related to the possibilities of reconstruction and 

calibration of the jets and leptons and suppression of 

the detector effects. 
 

 
 

Fig. 2. Distributions of the transverse momentum of the    

            charged lepton. 

 

 

 
                                                                     

Fig. 3. Distributions of the cosine of the charged lepton (а) angle in the W rest frame relative to the W direction in the q𝑞 

c.m.f. and (b) the cosine of the W-boson polar angle from the collision axis in the q𝑞 c.m.f. for different generators. 
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(a)                                                                      (b) 

 
(c)                                                                      (d) 

 
(e)                                                                      (f) 

 

Fig. 4.  Distributions of the transverse momentum of the charged lepton, the cosine of the charged lepton angle in the W 

rest frame relative to the W direction in the q𝑞 c.m.f. and the cosine of the W-boson polar angle from the 

collision axis in the q𝑞 c.m.f. for WH, ZH and 𝑊𝑏𝑏 events obtained (a, c, e) from CompHEP and (b, d, f) from 
PYTHIA8. 
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The distributions of some kinematic variables for 

the signal and background processes were compared. 

This procedure was repeated for events, simulated by 

various generators, in this case the PYTHIA8 and 

CompHEP generators. The distributions of three 

variables for signal and background samples are 

presented by Figures 4 (a-f). These variables are the 

transverse momentum of the charged lepton (a, b), the 

cosine of the charged lepton decay angle in the W rest 

frame relative to the W direction in the qq̅ c.m.f. (c, d) 
and the cosine of the W-boson polar angle from the 

collision axis in the qq̅ c.m.f. (e, f). The left plots     

(a, c, e) in Figure 4 were obtained using CompHEP 

generator, and the right plots (b, d, f) were obtained 

using PYTHIA8. In the plots, the signal is shown by a 

histogram with a red full circle, and WZ and Wbb̅ are 

shown by a blue full square and a green full triangle, 

respectively. The difference in the shape of the 

distribution of the 𝑊𝑏𝑏̅ process between PYTHIA8 

and CompHEP is due to the fact that in PYTHIA8 we 

cannot generate the 𝑊𝑏𝑏̅ directly, but only by 

generating the W+gluon and W+gamma processes, 

where the gluon and gamma decay into 𝑏𝑏̅. 

 

4. CONCLUSION 

 
From Figures 2 and 3, it can be seen that the 

shape of the distributions of variables for different 

generators are similar and the small difference 

between POWHEG and two other generators can be 

explained by the difference in the level of corrections 

(NLO and LO) that are taken into account during the 

event generation. It is obvious from Figures 4 that the 

shape of the distributions of variables for signal and 

background processes is very different. And these 

differences can be used in future analyses to suppress 

a large background contribution. The similarity of 

these distributions for the CompHEP and PYTHIA8 

generators validates these variables and allows them to 

be used in the event selection process. 

_____________________________________ 
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Parametrical interaction of waves with four frequencies in nondissipative negative index materials is studied by 

employment the constant intensity approximation, taking into account the reverse reaction of excited waves onto the exciting 

ones. An expression for complex amplitude as well as the efficiency of conversion to signal wave at the frequency  ω1 in  

arbitrary phase detuning  is obtained. It is shown that  in contrast to   the constant field approximation both amplitude and 

conversion efficiency are the functions of intensities of forward pump waves as well as the weak wave at frequency  ω2 in the 

constant intensity approximation. It is shown that maxima or minima of the conversion efficiency displace with alteration of 
weak wave intensity. Analytical expression for the   optimum value of phase mismatch at which reflective index reaches its 

maximum is derived.  

 

Keywords : metamaterials, phase mismatch, for wave mixing, coefficient of reflection, constant intensity approximation. 
PACS:78.67.Pt ; 42.65-k; 42.70-a 

 

1. INTRODUCTION 

 
The prospective  negative index materials (NIM) 

are attractive with their unusual structure and properties 

[1,2]. The mesh of split-ring resonators are placed 

periodically. Each cavity is constructed of two 

concentric rings with a certain gap. The air gap between 

inner and outer ring serves as a capacitor. However the 

rings are act as an inductor making the LC resonant 

circuit.  

Since NIM  includes  electro conducting wires-

rods and   split-ring resonator  (Fig.1)  the nonlinear 

response of material also has two components. 

Effective dielectric permittivity  𝜀 = 1 − 𝜔𝑟
2/𝜔   where  

 𝜔𝑟  is the is the plasma frequency and 𝜔  is the 

frequency of the propagating electromagnetic wave. 

The effective permittivity is negative when the     

frequency is below the plasma frequency. When 

operating at the plasma frequency, the effective 

permittivity is zero, and hence yields a zero index of 

refraction. In a traditional nonlinear media four-

frequency interaction are devoted number of works 
[3,4].  Investigations of nonlinear four-photon mixing 

in optical fibers are presented for the general case of 

depleted pump power in [5]. Efficiency of generation 

upon experimental four-frequency mixing in a layered 

negative index structure metal-dielectric-metal is 

higher as two orders as compared to that of generation 

in a pure gold film of 20nm thickness. Parametrical 

interactions of optical waves were investigated in 

metamaterials [6-8] by employment constant intensity 

approximation [9-13]. This paper centers on the study 

the four-frequency nonlinear mixing of optical waves 

in case of  negligible  linear losses . 

 

2. THEORY AND DISCUSSIONS 

 
We assume that   idler  𝐴2  and two  pump waves 

𝐴3,4 are  normally incident onto the left side surface of 

metamaterial  with length  𝑙 and propagate   along 

positive direction of  z- axis,  while signal wave 𝐴1 
propagates in the opposite direction.  Hence energy  

fluxes are as follows; 𝑆2,3,4 −  in thye positive direction 

of z-axis and  𝑆1  in the negative direction ( Fig.1).  

 

 
When three light waves at frequencies  𝜔2  , 𝜔3   

and 𝜔4   are incident onto cubic nonlinear medium the 

nonlinear polarization leads to the generation of a new 

electromagnetic with frequency  𝜔1 = 𝜔3  +  𝜔4 − 𝜔2 . 

In a photon language the FWM is that two photons with 

initial frequencies are subjected to elastic scattering to 

produce two  new photons. Here the law of 

conservation of energy and momentum   have to be 

fulfilled in this process:   𝑘1 = 𝑘3 +  𝑘4 − 𝑘2  where  

𝑘𝑗 − are the wave numbers at respective frequencies 

𝜔𝑗(𝑗 = 1 − 4).  Conservation of momentum leads to 

the phase matching conditions.    Boundary conditions  

of the described interaction of waves  are given by    

𝐴2,3,4(𝑧 = 0) = 𝐴20,30,40   and   𝐴1(𝑧 = 𝑙) = 𝐴1𝑙, 

where 𝑧 = 0   corresponds to the left input of the 

metamaterial, 𝐴20,30,40  are the initial amplitudes of the 

transmitted weak wave ( 20A ) at the frequency 2ω  and 

of the pump waves ( 30,40A ) at the frequencies 𝜔2,3  and    

𝐴1𝑙  is the initial amplitude of the transmitted signal 

wave at the right input of the nonlinear medium at   𝑧 =

mailto:phys_med@mail.ru
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𝑙.  For  this consideration dielectric permittivity of the 

signal wave becomes negative that is reflected in the 

first equation of following set of reduced equations 

(𝛿𝑖 = 0): 
 

𝑑𝐴1

𝑑𝑧
= −𝑖𝛾1𝐴3𝐴4𝐴2

∗ 𝑒𝑖∆𝑧 ,    
𝑑𝐴2

𝑑𝑧
= 𝑖𝛾2𝐴3𝐴4𝐴1

∗ 𝑒𝑖∆𝑧                                             

 

 
𝑑𝐴3

𝑑𝑧
= 𝑖𝛾3𝐴1𝐴2𝐴4

∗ 𝑒−𝑖∆𝑧 ,  
𝑑𝐴4

𝑑𝑧
= 𝑖𝛾4𝐴1𝐴2𝐴3

∗ 𝑒−𝑖∆𝑧                       

                                                               (1) 

where jA  -are the complex amplitudes of the magnetic 

fields of the transmitted quasi-monochromatic waves, 
(3)

1 1 11γ 2π χ / εk and  (3)
2,3,4 2,3,4 2,3,42,3,4γ 2π χ /εk  

are the nonlinear wave coupling coefficients, 
(3)χ j  is 

the cubic susceptibility, and 3 4 1 2Δ k k k k     is 

the phase detuning of the interacting waves. The 

corresponding equations for the electric components 

can be derived analogously with replacement of the 

dielectric permittivity of the medium j  by the 

magnetic permeability μ j  and vise versa [14].    

Differentiation of the first equation of system (1) 

yields to the following second order differential 

equatiuon  

 

𝑑2𝐴1

𝑑𝑧2
− 𝑖∆

𝑑𝐴1

𝑑𝑧
+ (𝛾1𝛾2𝐼30𝐼40 − 𝛾1𝛾3𝐼20𝐼40 − 𝛾1𝛾4𝐼20𝐼30 + ∆2/4)𝐴1 = 0                         (2) 

 

Having put   𝐴1 = 𝑎1 × exp (𝑖∆𝑧/2)  in the (2)  gives  

 

             
𝑑2𝑎1

𝑑𝑧2
+ 2𝑎1 = 0                          (3)                                                     

 

Where 

      = (𝛾1𝛾2𝐼30𝐼40 − 𝛾1𝛾3𝐼20𝐼40 −
            −𝛾1𝛾4𝐼20𝐼30 + ∆2/4)1/2  

 

Solution of (3) is given by  

  

𝑎1 = 𝐶1𝑐𝑜𝑠𝑧 + 𝐶2𝑠𝑖𝑛𝑧              (4)                                                      

 
For a  complex amplitude of signal wave we can write   

 

𝐴1 = (𝐶1𝑐𝑜𝑠𝑧 + 𝐶2𝑠𝑖𝑛𝑧 ) exp(𝑖∆𝑧/2)   (5)                                                   

 

Equation constants    𝐶1  and    𝐶2  are found  by the 

boundary conditions:  

𝐴1(𝑧 = 𝑙) = 𝐴1𝑙  and 

             𝐴2,3,4(𝑧 = 0) = 𝐴20,30,40                   (6) 

 

Employment of  the first condition yields for constant   

𝐶1 : 

𝐶1 =
𝐴1𝑙𝑒

−
∆𝑙
2

𝑐𝑜𝑠𝑙
− 𝐶2𝑡𝑎𝑛𝑙              (7) 

 

Application the second condition  to the first equation 

for  𝐶2   gives 

𝐶2 = −𝑖[𝛾1𝐴30𝐴40𝐴2
∗ + (∆/2)𝐶1]/       (8)                                                       

 

Further substitutions  has allowed to obtain complex 

amplitude of the signal wave  in non-dissipative  

medium in the form 

 

𝐴1(𝑧) = (𝑀1 + 𝑖𝑀2 )𝑒
∆𝑧

2                                                                 (9) 

Here   

𝑀1 =
𝐴1𝑙𝑒−𝑖

∆𝑙
2 𝑐𝑜𝑠𝑧 + 𝑚(∆/2)

𝑠𝑖𝑛𝑙


𝑠𝑖𝑛𝑧


𝑐𝑜𝑠𝑙 − 𝑖
∆

2
𝑠𝑖𝑛𝑙

 

 𝑀2 =
 𝑚𝑠𝑖𝑛𝑙

𝑐𝑜𝑠𝑧


−  𝐴1𝑙𝑒−
∆𝑙
2 (∆ /2)

𝑠𝑖𝑛𝑧


𝑐𝑜𝑠𝑙 − 𝑖
∆

2
𝑠𝑖𝑛𝑙

− 𝑚
𝑠𝑖𝑛𝑧


 

 

where   = (𝛾1𝛾2𝐼30𝐼40 − 𝛾1𝛾3𝐼20𝐼40 − 𝛾1𝛾4𝐼20𝐼30 + ∆2/4)1/2  ,     𝑚 = 𝛾1𝐴30𝐴40𝐴2
∗  

 

In the input  (𝑧 = 0)  to the medium amplitude of signal wave is simplified as  

 

𝐴1(𝑧) = (𝑀3 + 𝑖𝑀4 )                                                               (10) 

where  

𝑀3 = 𝐴1𝑙𝑒
−𝑖

∆𝑙
2 /(𝑐𝑜𝑠𝑙 − 𝑖

∆

2
𝑠𝑖𝑛𝑙 ) 

𝑀4 =  𝑚
𝑠𝑖𝑛𝑙


/(𝑐𝑜𝑠𝑙 − 𝑖

∆

2
𝑠𝑖𝑛𝑙 ) 
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Having put  Euler’s formula   𝑒−𝑖
∆𝑙

2 = 𝑐𝑜𝑠
∆𝑙

2
− 𝑖𝑠𝑖𝑛

∆𝑙

2
  into expression  (10) we  get  amplification factor  =

𝐼1(𝑧 = 0)/𝐼1𝑙   of a signal wave in case of arbitrary phase detuning:  

 

=
( 

∆

2
𝑠𝑖𝑛𝑙∙𝑠𝑖𝑛

∆𝑙

2
+𝑐𝑜𝑠

∆𝑙

2
𝑐𝑜𝑠𝑙−

𝑚∆

𝐴1𝑙

𝑠𝑖𝑛2𝑙

2 )2+(𝑐𝑜𝑠
∆𝑙

2
∙

∆

2
𝑠𝑖𝑛𝑙−𝑠𝑖𝑛

∆𝑙

2
𝑐𝑜𝑠𝑙+

𝑚

𝐴1𝑙

𝑠𝑖𝑛2𝑙

2
 )2

[ 𝑐𝑜𝑠2𝑙+(
∆

2
)2 𝑠𝑖𝑛2𝑙]2

     (11) 

 

Energy exchange between interacting waves is 

mainly dependent on the phase matching conditions. 

When this condition satisfy  enhancement of idler and 

signal waves occur because they extract energy from 

two pump waves. In opposite case energy can flow 

back from idler and signal waves to the pump waves. 

When two pumps and a signal wave are incident onto 

nonlinear medium the idler wave is generated through 

four-wave mixing. Phase matching is important for 

signal amplification and  generation of idler wave.  

 In the left input  ( 𝐴1𝑙 = 0)  of nonlinear medium 

the coefficient of reflection of the mirror that is the 

metamaterial itself due to its negative refractive index 

is calculated from the (11)  by the following expression: 

 

𝑅 =
𝐼1(𝑧=0)

𝐼20
= (𝛾1𝐴30𝐴40𝑡𝑎𝑛𝑙)2 / (2 +

∆

4

2
𝑡𝑎𝑛2𝑙)                                          (12) 

where 

    2 =
∆

4

2
+ 𝐾  ,  𝐾 = 𝛾1𝛾2𝐼30𝐼40 − 𝛾1𝛾3𝐼20𝐼40 − 𝛾1𝛾4𝐼20𝐼30 

To obtain the optimal value of phase mismatch parameter at which reflective index becomes maximum we 

differentiate expression (12) with respect to parameter  ∆ . Calculation shows that refractive index reaches its 

maxima when  condition 𝑙 = 0, 1.5𝜋 , 2.5𝜋, 3.5 𝜋   is fulfilled. For optimal value of phase mismatch 

parameter then we get   

opt,1Δ  1 3 20 40 1 4 20 30 1 2 30 402 γ γ γ γ γ γI I I I I I                                                 (13) 

Principal maximum of reflective coefficient is obtained near to the Δ 0 , which depends on the intensities of 

pump waves and idler wave.   

        Under phase matching  conditions (∆= 0 )    we get from (10)  more simplified   

 expression for the  amplitude of  a  signal wave : 

  

𝐴1(𝑧) = (𝑀5 + 𝑖𝑀6 )                                                                           (14)    

 

 where  𝑀5 = 𝐴1𝑙/𝑐𝑜𝑠1𝑙  ,  𝑀6 =  
𝑚


𝑡𝑎𝑛1𝑙,  1 = (𝛾1𝛾2𝐼30𝐼40 − 𝛾1𝛾3𝐼20𝐼40 − 𝛾1𝛾4𝐼20𝐼30)1/2  

 

       All dependences of (10) and (12) on the various 

parameters of problem can be obtained in both constant 

field approximation and constant intensity 
approximation. Qualitative analysis of the formula (10) 

results in the following: conversion efficiency of 

energy of a signal wave has oscillator character which 

decrease with increase in the phase mismatch 

parameter. When coefficients  𝛾3   and  𝛾4 are differ 

from zero in the expression for   we get result of 

constant intensity approximation while  equality to zero 

is analogous to the result of constant field 

approximation.  

As can be seen in contrast to the constant field 

approximation efficiency of conversion depends on the 

intensity of idler wave at frequency 𝜔2  in addition to 

other parameters. When we consider problem in the 

constant field approximation maxima and minima 

corresponding to different plots are coincide while 
those displace as a function of weak wave intensity in 

the constant intensity approximation.  

Qualitative consideration shows that   it is possible 

to obtain enhancement of the backward signal wave by 

varying the input intensities of forward waves. 

3. CONCLUSIONS  

 
On the basis of above stated one can conclude that  

efficiency of frequency conversion ,  coefficient of 

reflection upon four wave mixing in the constant 

intensity approximation are  the   functions  of  

metamaterial thickness,  intensities of forward pump 

waves as well as  weak wave at frequency  𝜔2  . There 

is optimum value of phase mismatch at which 

coefficient of reflection reaches its maximum. In 

contrast to the  constant field approximation , efficiency 

of frequency conversion increases with increase in the 

intensity of weak wave in the constant intensity 
approximation taking into account reverse reaction of 

excited waves on the phases of exciting waves. An 

existence  a displacement of maxima and minima of 

conversion efficiency oscillations  due to variations  in 

intensity of weak wave has allowed to determine 

distance between neighbor minima or maxima and 

hence period of oscillations. 

______________________________ 
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The photoluminescence (PhL) properties of chalcogenide Ca4Ga2S7:Eu2+ semiconductors in interval of impulse laser 

excitation from 10 up to 105 Vt/cm2 at room temperature are studied. 

PhL of Ca4Ga2S7:Eu2+ compound at excitation by radiation in range 450-575nm is characterized by essential 

dominance of the band in the spectrum on 660 nm. PhL of Ca4Ga2S7:Eu2+ compound on wave lengths 560 nm and 660nm 

damps at constant times 258 nsec and 326 nsec correspondingly.  

  

Keywords: chalcogenide semiconductors, high excitation level, luminescence efficiency. 

PACS:76.30, 78.55   

  

INTRODUCTION 
 

The preparation of high-production devices for 
visualization and illumination which are able to 

compete with traditional systems requires the creation 

of luminophors with specific properties. This 

necessity causes to development of new materials or 

optimization of already existing luminophors. 

In this aspect the triple alkaline-earth 

chalcogenide semiconductors of II-III2-VI4 (II-Ca, Ba, 

Sr; III-Ga, Al; VI-S, Se) type activated by rare-earth 

elements are perspective ones. In present, luminophors 

of above mentioned system activated by Eu ions 

attract investigators’ attention, as they have properties 

required for comparably new technologies of plane 

screens, screens of inorganic electro-luminescence 

devices, including color TV and light sources [1 – 5].  

Ca4Ga2S7:Eu2+ compound belongs to the group 

of high-performance luminophors with general 

formula CamGa2Sn:RRE (RRE is rare-earth element) 
where n=4,5,6,..., m = n-3 [6]. The compounds 

activated by 4f elements in M – Ga – S(Se) system 

can be active medium of semiconductor lasers, 

luminescence lamps, color displays and other systems 

of information mapping [7 – 9]. These compounds 

have the forbidden band width 3,0-4,4eV and 

effectively transform the electric field energy, 

roentgen and ultraviolet radiations, and also electron 

beams in visible light. The excitation spectrum of 

given compounds covers the region from vacuum 

ultraviolet up to 500 nm. 

The investigation results of luminescence and 

optical properties of the crystals of Ca4Ga2S7 type 

activated by Eu ions are shown in [10, 11]. The 

chalcogenide semiconductor Ca4Ga2S7:Eu2+ can be 

perspective luminophor for lighting devices on the 

base of InGaN-LD, however its spectral characteristics 

aren’t studied enough. For establishment of usage 
possibility of this luminophor in such devices, it is 

necessary the study of its spectrum stability and 

radiation effectiveness in wide interval of excitation 

levels which is dedicated the present paper. 

In the given paper the measurements of 

photoluminescence (PhL) spectra in the dependence 

on temperature and excitation level, excitation 
spectrums of photoluminescence and time-resolved            

photoluminescence spectra.   

 

1. EXPERIMENT TECHNIQUE 
 

The crystal samples Ca4Ga2S7 are synthesized by 

solid-phase reaction of binary compounds CaS, Ga2S3 

and EuF3 at temperature 1400K taken in 

stoichiometric ratios in graphitized quartz ampoules 

evacuated up to 10-4 millimeter of mercury.  

The obtained polycrystals are grinded with 

following deposition on quartz planes. The excitation 

spectra of photoluminescence (EPhL) are measured at 

excitation by monochromatic radiation of xenon lamp 

at temperature 300 K. The influence of excitation level 

on spectra and PhL efficiency in interval 10 –105 

Vt/cm2 is analyzed by integral PhL spectra of samples 
at excitation and 50 nano-sec impulse radiation of 

InGaN-LD on wave length 405 nm.     

The investigation of damp kinetics of PhL 

micropowder Ca4Ga2S7:Eu2+ (5 %) is carried out at 

excitation by radiation of fourth harmonic of 

femtosecond Yb:KYW-laser on 260 nm at room 

temperature.    

 
2. RESULTS AND THEIR DISCUSSION. 

 
Ca4Ga2S7:Eu2+ (5 at.%) compound as a result of 

electron transitions in ions of Eu2+- activator has PhL 

in yellow-red range in the form of two wide radiation 

bands with maximums on 560 and 660 nm at 

excitation by radiation on wave length 337 nm at 

room temperature (Fig.1., curve 1).  

The excitation spectra of short-wave band of PhL 

micropowder Ca4Ga2S7:Eu2+ (5 at. %) near 560 nm 

presents itself the wide band overlapping range from 

250 up to 500 nm with maximum on 345 nm 

according to Fig.1 (curve 1′). EPhL spectrum on 660 

nm presents itself two wide bands overlapping 

mailto:oktay58@mail.ru
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spectral ranges from 250 up to 350 nm and from 400 

up to 625 nm with maximums on 265nm and 470nm 

correspondingly, as it is shown in Fig.1 (curve 2′).       

The essential differences of excitation spectra of 

PhL bands near 560 nm and 660 nm allows us to 

change the luminescence color of Ca4Ga2S7:Eu2+ 

compound choosing the pumping source. As a result, 

PhL of Ca4Ga2S7:Eu2+ compounds at excitation by 

radiation in range 450-575 nm are characterized by 

significant dominance of the band in the spectrum on 

660 nm in correspondence with Fig.1 (curve 1).    

The obtained damp kinetics of PhL bands with 

maximums on 560 nm and 660 nm of Ca4Ga2S7:Eu2+ 

(5 at.%) solid solutions are presented in Fig.2. The 

constants of damping times near 560 nm and 660 nm 

are 258 nsec and 326 nsec, correspondingly.        
    

 

  

 
  

Fig.1. PhL spectra (curves 1 and 2) and excitation PhL (curves 1′ and 2′) 

           Ca4Ga2S7:Eu2+ (5 аt.%) compounds on wave lengths of excitation 337 nm (1) and 467 nm (2) and registration  

           560 nm (1′) and 660 nm (2′) at room temperature. 

 

 
  

Fig.2. Damp kinetics of PhL bands with maximums on         

           560 nm and 660 nm of Ca4Ga2S7:Eu2+ (5 at%)  
           solid solutions at λex = 260 nm and room     

           temperature.   

 

Ca4Ga2S7:Eu2+ (5 at.%) compound has PhL in 

yellow-red range in the form of two wide radiation 

bands near 564 nm and 654 nm at temperature 10 K 

and excitation by continuous radiation on wave length    

405 nm in correspondence with Fig.3 (a). Note that 

Еu2+ ions in different matrixes have wide bands of 

absorption and radiation. The radiation with wave 

length from ultraviolet up to red luminescence is 

observed in the dependence on matrix structure which 

is activated by Еu2+ ions [12]. 4f7(8S/2) configuration is 

main unexcited state of Еu2+ ions and 4f65d 
configuration is excited state of Еu2+ ions. The 

intensive luminescence in yellow (564 nm) and red 

(654nm) spectrum region is caused by 4f65d→4f7(8S/2) 

electron transitions in Еu2+ ions. 
The temperature increase from 10K up to 300K 

leads to widening of radiation bands of Ca4Ga2S7:Eu2+ 

compound near 564 nm and 654 nm, blurring of their 

structure and the shift on 5 nm and  8 nm in short-

wave side, correspondingly. The integral intensity 

decreases on 40%.  

The significant stability behavior of PhL 

spectrum of Ca4Ga2S7:Eu2+ compound in interval of 

excitation level from 10 Vt/cm2 up to 2.2·105 Vt/cm2 

by impulse 50 nsec radiation of InGaN-LD on wave 

length 405 nm that is seen in Fig. 4(a), is observed 

[13]. PhL efficiency of Ca4Ga2S7:Eu2+ compound 

saves its constant value in wide interval of excitation 

level from 10 Vt/cm2 up to 2·104 Vt/cm2 as it is seen 

in Fig.4 (b). The reversal efficiency decrease on 40% 

takes place with further increase of pumping up to 

4·105 Vt/cm2.  
PhL kinetics of Ca4Ga2S7:Eu2+ compound at 

room temperature and excitation level 2.2 μJ/cm2 by 

impulse radiation of Yb:KYW-laser on wave length 

260 nm and duration 140 fsec is described by two 

exponents with decay times 60 nsec and 240 nsec in 

correspondence with Fig.5. The further increase of 

pumping level up to 36 μJ/cm2 leads to insignificant 

decrease of constant time of fast component up to 57 

nsec. The presence of fast component in kinetics of 

PhL damping of Ca4Ga2S7:Eu2+compound at 

excitation by intensive laser radiation of femtosecond 

duration, is caused by the presence of cross-relaxation 

process that is character for semiconductor matrixes 

activated by Eu2+ ions.  



B.D. URMANOV, M.S. LEONENYA, P.G. YABLONSKI, O.B. TAGIYEV, F.A. KAZIMOVA, T.Sh. IBRAHİMOVA 

14 

 
                                         a)                                                                                             b) 

  
Fig.3. PhL spectra of Ca4Ga2S7:Eu2+(a) compound and dependence of integral intensity of its PhL on temperature in interval  

          10 – 300K at excitation by radiation on wave length 405 nm with power density by order 1Vt/cm2 (b).  

 

 
        а                                                                                b 

  
Fig.4. PhL spectra of Ca4Ga2S7:Eu2+ compound at different excitation intensities 10 (1), 102 (2), 103 (3), 104 (4), 105 (5),     

          2.2·105 Vt/cm2 by LD radiation on wave length 405 nm (a) and dependence of PhL integral intensity on excitation   

          level at 300 K (b).    

 

 
 

Fig.5. PhL damping kinetics of Ca4Ga2S7:Eu2+  
          compound at temperature 300K and excitation  

          different levels by impulse radiation of  

          Yb:KYW-laser with duration 140fsec on wave  

          length 260 nm.     

 
CONCLUSION 

 
It is shown that Ca4Ga2S7:Eu2+ (radiated in 

yellow-red range) is the high-efficiency luminophors 

at excitation by UV-blue radiation of LD and LED 

(Light Emitting Diode) and have the high stability of 

the form and position of PhL spectrum in the 

excitation level interval up to ~104 Vt/cm2 with further 

reversal PhL efficiency decrease that makes them 

perspective ones for the use in the capacity of 

luminophors excited by radiation of commercial 

AlGaN and InGaN lasers and light-emitting diodes for 

formation of sources of coherent and non-coherent 

radiation of “white” color with high values of colored 

characteristics [14 – 16].     
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The distributions of breakdown waiting time (measured as electric durability τ) of polymers in constant field on sign in 

two directions (polarity) are determined and τ of polymer samples treated by preliminary polarization is also measured. It is 

shown that preliminary polarization of the samples in constant electric field decreases their electric strength at influence of 

the field of the same polarity. This fact evidences about cumulative nature of preparation process to breakdown and increases 
the electric density for the field of the opposite polarity. This indicates the ability to regeneration of “elements of destruction” 

caused by field action.     
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INTRODUCTION 
 

The polymer films are widely used in the 

capacity of isolated materials in the different 

industries. That’s why the investigation of their 

electric strength properties is the actual task. In spite 

of the fact that the study of influence of strong electric 

fields on polymer fields has continued many decades 

[1], the conventional point of view on nature of 

polymer electric strength is absent.  

Many authors suppose that the formation of 

cavities of micron sizes in polymer in which the gas 

discharges can be formed is the reason of breakdown 

of polymer film under action of electric field. Note 

that gas discharges in cavities with sizes less 5mm 
don’t form in the fields usually used in the 

experiments on study of polymer durability, i.e. in the 

fields with strength Е~108 V/m [1,2]. It is accepted 

that cavities appear as a result of molecule destruction 

[3-5]. At this fact it isn’t considered that interatomic 

bond strength in macromolecule essentially exceeds σ 

stress which can act in dielectrics in electric field. 

Moreover, the macromolecule destructions can’t lead 

to cavity formation as the material density at bond 

breakage doesn’t change.       

It is established that breakdown itself is the final 

act of polymer preparation process to breakdown 

appearance for polymer dielectrics. The experiment 

results on revealing and study of “electric durability” 

τ, which is breakdown waiting time at application to 

polymer samples of electric field strength E (constant 

or alternative ones) [6 – 8]. τ means that processes 
preparing the samples to breakdown take place in 

polymers under field action. From this it is followed 

that process consists of succession of some elementary 

acts the waiting time of which defines the process 

temps. Elementary acts leads to formation of local 

changes which are conventionally called “destruction 

elements”. The accumulation of these elements for τ 

time forms the conditions of nucleation and 

development of magistral breakdown. Thus, the 

durability is the electric strength characteristics 

including the preparation process kinetics.    

It is shown that under electric constant field 

action this process is the cumulative one and consists 

in constant formation in polymer of volume electric 

charge, the reach of some critic value of which leads 

to the breakdown [8 – 10]. So, the charge formation is 

the factor decreasing the electric strength. At the same 

time it is shown that accumulated charges can be 

eliminated (by heating of the samples or action of 

opposite polarity electric field) and thus one can carry 

out the regeneration of initial polymer strength state 

[8,9]. Thus, the possibilities of manipulation of 

polymer charge-strength state take place.       

The polarization effect is the one of most 

essential electron processes causing the main 

peculiarities of electric structure of ionizing states as it 
defines the intrinsic energy of charge carrier and state 

of conduction levels in energy scheme of ionized 

states.  

The study of polarization process influence on 

polymer electric strength and possibility to use the 

manipulation of accumulated charges as increasing 

factor of electric durability of polymer dielectrics is 

the aim of the given work.   

 

OBJECTS AND INVESTIGATION METHODS 
 

The films of polyethylene terephthalate (PETP) 

and polytetrafluorethylene (PTFE) with width in 

several decades of micrometers are the objects. 

Electrical load and breakdown are carried out in the 

cells with pressure electrodes with 18mm diameter at 

electric voltage by constant sign. The durability τ 
which is the time between moment of electric field 

application and breakdown appearance is measured. 

The test results of the similar type for electric 

destruction of solid states including the polymers are 

described in [10]. Note that qualitative analysis of test 

results is carried out without necessary taking under 

consideration of durability statistics.      

As it is known [6,7], the durability values for 

externally identical samples and conditions of 

electrical load (electric strength E, temperature T) 

differ by wide spread (1–2 decade order on durability). 

That’s why the corresponding statistical service of this 
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circumstances for the revealing of regularities of 

electric destruction kinetics.   

 

EXPERIMENTAL RESULTS 
 

The carried out investigations are dedicated to 

consideration of elementary processes taking place in 

polymer dielectrics in constant electric field which 

control the preparation of (breakdown) electric 

destruction kinetics. The breakdown preparation 

process in polymers being in electric field follows 

from test results at constant and alternative field 

action. The distribution of series from 30 samples of 

PETP and PTFE on durability is given in Fig.1 (a,b), 

nτ/n ratio is on ordinate axis where  nτ is sample 

number disruptive during τ time, n is total sample 

number. It is seen that curve of integral distribution on 

lgτ has S – type form that corresponds to unimodal 

distribution close to normal one (probability integral). 

The data for two directions (polarities) of applied field 

at constant values of E and T are given in Fig.1(a,b).  

 

   

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1. Integral distribution of polymer samples on electric durability in constant electric field. Light and dark points     

          correspond to opposite field polarities. Temperature 100K.   

          a is - PETP, Е=0.62 GV/m  

          b is - PTFE, Е=0.46 GV/m 

 

The distributions practically coincide with each 

other that establish the symmetry of test cell (diameter 
of electrodes is 18mm). The last fact will be the 

essential one at further manipulations.   

τ1 durability values (τ1=1000sec for PETP, 

τ1=400sec for PTFE) corresponding to breakdown of 

half sample number are defined from Fig.1 (a,b), i.e. 

during this time the breakdown of half number of 

electrically loaded samples, takes place. Thus, new 

series of the same samples are taken and endured at 

the same voltages and temperature during time τ1 after 

which the voltage is taken. As a result, the half of 

sample number in series treated by field action but 

“not waiting” the breakdown stay not disruptive ones 

with which the further operations are carried out. 

 

ANALYSIS AND RESULT DISCUSSION 
 

The meaning and analysis technique of these 
operations is schematically explained in Fig.2. Here 

curve 1 is supporting curve corresponding to 

distribution by durability of second half of sample 

number in Fig., i.e. which have the durability bigger 

than τ1. If after exposure τ1 and voltage taking off, the 

accumulated changes are totally saved, so after 

repeatable field action of the same value and sign, 

distribution of residual samples on secondary 

durability τ2 should take place left than curve 1, i.e. in 

the form of curve 2. Such position of curve 2, which is 
absent to reconstruction of curve 1 in lg(τ-τ1) 

coordinates should correspond to total absence of 

regeneration.  
 

 
 

Fig.2. Distributions on durability. 1 is distribution of not 

disruptive samples after exposure during τ1 time; 2 is 

the same distribution in lg(τ- τ1) on secondary 
durability (after interruption) at regeneration 

absence; 3 is distribution on secondary durability of 

the same samples at partial regeneration; 4 is 

distribution on secondary durability of the same 
samples at their strengthening.  
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If for the time of interruption of the same sign 

field action the changes in the rest samples are carried 

out or decrease of accumulated changes cause by 

temperature and opposite polarity field action, then the 

distribution on secondary durability should take place 

between curves 2 and 1 (curve 3). 

The overlapping of the curve 3 on the curve 1 

takes place at the total regeneration. Finally, for 

example, if the strengthening changes take place as a 

result of switching of the field in the samples, then 

distribution on secondary durability should take place 

right than curve 1 (curve 4).  

The data correspond to experimental observation 

of curves 2 and 3 for the series of polymers are given 

in [8,9]. In this case, the samples are put for some time 

τ1 in the field (the part of them are disrupted), further 

the voltage in interval time (τn) switches off and 
switches on again. The “secondary durability” (τ2) 

which is the electric durability of not disruptive 

samples for τ1 time beginning from the moment of 

second voltage switching on, is measured. The 

secondary durability of the samples is defined after 

changing temperature at definite time; τ1 value 

corresponds to breakdown of half of samples. It is 

revealed that sample distributions on secondary 

durability shift in the region of least values τ in 

comparison with distributions in the tests without 

breaking of field action. Consequently, the sample 

exposure under voltage during time τ1 leads to 

consumption of structural strength part. This 

evidences about the fact that breakdown preparation 

process takes place in electrically loaded polymers. As 

a result the changes which aren’t totally regenerated 

during time τn accumulate in the samples during time 
τ1, i.e. they show that changes accumulated in the 

samples for time τ1 save if in interruption the sample 

doesn’t heated or it isn’t treated to action of opposite 

polarity field.                   

The distribution of polymer samples on 

secondary durability defined in tests with breaking of 

field action closes to distribution on durability in tests 

without breaking of field action, if for time τ the 

samples are heated or they are treated in opposite 

polarity field. This means that change regeneration 

accumulated in polymer samples for time τ1 takes 

place at heating and in the opposite polarity field. 

Especially this fact (data on opposite polarity field 

regenerating action) leads to conclusion that sample 

preparation process to breakdown is connected first of 

all with formation of volume electric charges (rapidly, 

with electron accumulation in traps). So, the question 

arises: can this process lead not only to approach of 

electric stability losses (i.e. to breakdown approach), 
but to increase of electric stability.  

This question is solved by following simple 

method. The series of samples (30) are treated under 

action of electric field of constant sign (Е=0.62 GV/m 

for PETP and Е=046 GV/m for PTFE) for the given 

polarity during time τ1 (τ1=1000sec for PETP, 

τ1=400sec for PTFE). Further, the rest half of sample 

number at the same temperature (T=100K) are treated 

under field action of the same strength of opposite 

polarity, correspondingly for PETP and PTFE until 

appearance of sample breakdown. The distribution of 

this sample part on their secondary durability is shown 

in Fig.3. (a,b) (curve 2). It is shown that shift of 

distribution curve right from supporting curve 1 takes 

place, i.e. to the side of electric durability increase. 

Thus, it is experimentally established that samples 

previously polarized in the field of the one polarity are 
more electrically strength ones in respect of the 

opposite polarity field. 

 

 

 
 

Fig.3. Integral distribution of polymer samples on electric durability. Temperature is 100K.  

           а is PETP, Е=0.62 GV/m 
           b is PTFE, Е=0.46 GV/m 

           1 - is distribution of disruptive samples after exposure during τ1(τ1=1000С for PETP, τ1=400С – for PTFE)     

           without the change of filed polarity 

           2 - is distribution of disruptive samples after exposure during τ1time with change of filed polarity after it. 
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The results of polarization strength of polymer 

samples are obtained in the tests of another type on 

PTFE films. With this aim the dependence of 

breakdown waiting time (durability) on constant 

electric field strength of the given polarity is 

measured. The results of such measurements for 

T=293K are given in Fig.4 (dependence 1). Each point 

in graph is the result on averaging by 12 durability 

measurements at each value of field strength.    

Many series of the same samples are treated by 

previous action of constant electric field of strength 

Е=0.038 GV/m during 1 hour at 380K. Further, the 

electric durability of such samples at 293K at the both 

field polarity and opposite one is measured. If field 

polarity coincides with field polarity of previous 

polarization, then decrease of sample electric 

durability is observed (Fig.4., dependence 2). Vice 
versa, if the polarity is opposite one, then sample 

electric durability increases (Fig.4, dependence 3) and 

exceeds the durability of initial samples (not treated 

by previous polarization). The corresponding data for 

PETP are the similar.   
 

 
 

Fig.4. The dependence of PTFE durability on electric field    
           strength (by sign). Temperature is 293K.  1 is   

           durability of the samples without previous           

           polarization; 2,3 are disabilities of the samples after  

           exposure in constant field Е=0.038 GV/m during 1  
           hour at 380K; 2 is durability of the disruptive samples  

           in the field of the same polarity; 3 is the durability of  

           the disruptive samples in the field of opposite  
           polarity. 

 

Thus, previous polarization of polymer samples 

in constant electric field decreases their durability at 

action of opposite polarity and increases the durability 

for opposite polarity field. The similar behavior of 

electric durability coincides with consumption of 

charge accumulation in polymer volume. The 

durability reduction (after some film exposure under 

voltage) up to primary value takes place at polymer 

heating or its placing for some time in electric field of 

opposite polarity. This means that the discharge of 

accumulated charge in the field of opposite polarity at 

heating takes place. Such operation leads even to that 

the electric durability of polymer films in field of 

opposite polarity (after action of initial field) is the 

highest than in continuously acting field. The 

durability estimations of polymer film carried out on 

the base of such consumptions in constant electric 

field is in the agreement with experimental data [8].    

At transfer of described polarization phenomena 

on electric ones, the polymer destruction in alternating 
field should be expected for the polymers with 

continuous durability. However, as it is well known 

[11,12] in alternative field the breakdown takes place 

even rapidly than in constant one (at equality of 

amplitude strength values of alternative and electric 

fields), i.e. electric strength of polymer dielectrics in 

alternative electric field is essentially lower than in 

constant one [13] and in particular, it is known, that 

polymer durability in alternative field approximately 

on two orders less than durability value in constant 

field [14-16]. Thus, the revealing of general and 

specific moments in mechanisms of electric 

destruction for constant and alternative fields has the 

more actuality.    

Finally, the possibility of technical use of 

“electret” strengthening of polymer dielectrics can 

serve the subject of further development.  
 

CONCLUSION  
 

The regeneration of electric density properties of 

polymer dielectric films after previous polarization 

which are reconstruction and strengthening of electric 

durability by the way of heating or action of opposite 

polarity field is studied. On the base of regeneration 

kinetics analysis the conclusion that regeneration is 

caused by discharge of volume charges, is made. This 

means that previous polarization of polymer films in 

them takes place and the binary volume charges (of 

double electric layers), i.e. polarization heterocharges, 

form.

_______________________________ 
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The compound of magnetic semiconductor of Cu3Ni0.5Se2 composition is synthesized. The parameters of low-temperature 

phase are determined and the structural-phase transitions are investigated by high-temperature X-ray diffraction method. It is 

established that synthesized Cu3Ni0.5Sе2 is two-phase one at room temperature and it consists of rhombohedral and cubic phases 

with parameters а=4,321Å, с=20,620Å and а=11,841Å correspondingly. It is determined that the rhombohedral phase 

disappears and cubic superlatice saves in temperature interval 293<Т<773 К at Т=462±3К in two-phase system. At temperature 

Т=665К the cubic superlatice transforms into cubic subcell with parameters а=5,94 Å,V=209.58 Å3, sp.gr. Fm3̅m, Z=4. 
 

Keywords: crystalls, structure, phase transitions, modifications.  
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INTRODUCTION 
 

It is known that thermomagnetic and 

thermoelectric materials with small lattice thermal 

conduction and high mobility of charge carrier have the 

wide field of use [1 – 4]. The so-called superion 

chalcogenides Ag, Cu and different solid solutions on 

their base belong to number of such materials [5 – 7]. 

It is obvious that the presence of experimental data on 

external factor influence on their structure is necessary 

for effective use of these materials. Note that for the 

given materials the polymorphous transformations 

under temperature influence is the one of the character 

properties. Indeed, the determination of equilibrium 

temperature between possible polymorphous 

modifications, temperature interval existence and 

structures of these phases has the big scientific and 

practical value.         
The investigation results of structural-phase 

transitions of Cu3Ni0.5Se2 composition solid solution in 

temperature interval 293-800K are given in present 

work.  

 

EXPERIMENTAL PART 
 

The physico-chemical characteristics of natural 

and synthetic umangite Cu3Se2 described in works [8 – 

10] is the stimulus for Cu3Ni0.5Se2 synthesis. It is seen 

that in such recording of chemical composition the 

valency balance isn’t carried out and open composition 

should be in the form С𝑢2
+1𝐶𝑢+2Se. For explanation of 

this statement we have made the attempt to obtain the 

full-valent solid solution by the way of implantation of 

Ni atom into Cu3Se2 composition. Cu3Ni0.5Se2 is 

synthesized from Cu, Ni and Se elements the purity of 

which isn’t less than 99.999 in evacuated ̴ 10-4 

millimeter of mercury in quartz ampoules in inclined 
furnace (̴150). Ampoule of length   ̴20 cm with 

substance (5 gr.) is gradually put into furnace the 

temperature of which is previously established in point 

1250K. After total immersion of the ampoule the 

furnace temperature is increased up to Т=1370 К and it 

is endured at the given temperature during 2,5 hours. 

Further the furnace temperature is decreased up to 

700K and the ampoule is endured at this temperature 

during six days for homogenization. The synthesized 
and annealed sample is the compact alloy of dark grey 

color and its powder has black color.          

 

INVESTIGATION OF PHASET 

RANSFORMATIONS 

 
All temperature experiments on revealing of 

structural-phase transitions in crystal of Cu3Ni0.5Se2 

composition are carried out in Institute of Physics of 

ANAS on powder diffractometer «D8 ADVANCE» 

(«Bruker») in vacuum (10-2 torr) in temperature interval 

293<Т<700К at mode 40 кV, 40 мА, CuKα-

λ=1.5406Å, 10<2θ<800. 

For this purpose, from the synthesized sample 

Cu3Ni0.5Se2 the fine-dispersed powders are prepared 

and the diffractogram at temperature 300K (Fig.1) is 

obtained. 
The treatment of the obtained diffraction picture, 

i.e. the indicating of interplanar spaces (d) with the use 

of calculative program TOPAS 4.2 shows that 

synthesized material at room temperature is the two-

phase one and it consists of rhombohedral phase with 

lattice periods on hexagonal axes аh=4.32 Å, сh=20.60 

sp.gr. 𝑅3̅𝑚, Z=9 and cubic phase with parameter 

а=11,841 Å, sp.gr. Pa-3, Z=32. The obtained X-ray 
diffraction data are given in Table 1, where ▲is 

rhombohedral phase and ■ is cubic phase.  

After definition of the main crystallographic 

parameters of low-temperature phase, we carry out the 

high-temperature investigations of the same sample in 

the mode of low-temperature variant. Whole 

investigation process is regulated in automatic mode. 

X-ray diffraction pictures at temperatures 293, 400, 

500, 600, 700 К are obtained. At give temperatures the 

sample is endured during 25 minutes and the picture is 

taken after it.    

The visual comparison of obtained temperature 

diffraction pictures and the treatment of separate peaks 

and whole diffractograms using TOPAS and EVA 

programs shows that the essential changes aren’t 

observed in Cu3Ni0.5Se2 structure in temperature 

interval 293-500К besides the decrease of initial peak 

intensity. The essential changes in sample diffraction 
picture is observed in point 500K. If we compare the 
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diffraction spectra in the given temperature, then it is 

revealed that at Т= 500К the initial peak intensity 

2θ=13,1250 increases and reflections of double peak 

2θ=26,200 and 26,530, 43,350, 44,000 peaks of low-

temperature phase damp. Simultaneously, the 

intensities of new reflections at 2θ=26,680 and 44,020 

strong increase.     

The given experimental facts evidence that the 

structural change takes place in the sample near 

T=500K. By treatment of these diffraction pictures 

using the above mentioned programs it is established 

that the picture observable near 500K shows that all 

images of rhombohedral phase in the given temperature 

disappear and the system transforms into one-phase 

state with primitive cubic structure (Table 2). The 

lattice parameters of this phase are following:                     

а ≈11,8684 Å, sp.gr.-𝑃𝑎3̅, Z=32. 

 

  

 

 
 

Fig. 1. Сu3Ni0.5Se2 diffractograms in different temperatures 293К, 500K, 700K. 

   

Table 1. 

X-ray diffraction data of Cu3Ni0.5Se2 at temperature 
293К. 

 
№ d I/I0 hkl 

1 6.77348 20 003▲ 

2 5.90905 1.5 200■ 

3 5.51234 10 100▲ 

4 3.51229 2 311■ 

5 3.39444 100 006▲ 

6 3.19555 17 312■ 

7 2.96211 3 400■ 

8 2.77339 6 330▲ 

9 2.70852 4 331■ 

10 2.26410 14 009▲ 

11 2.06174 60 440■ 

12 2.02388 11 441■ 

13 1.95728 7 600■ 

14 1.90273 3 611■ 

15 1.76240 11 200▲ 

 

▲is rhombohedral phase with lattice parameter  

а=4.32 Å 

■ is cubic phase with lattice parameter а=11,841 Å 
 

Table 2.  

X-ray diffraction data of Cu3Ni0.5Se2 at temperature 500К. 

 
№ d I/I0 hkl 

1 5,8984 18 200 

2 3,3451 100 222 

3 3,1989 7 321 

4 2,9612 20 400 

5 2,7102 10 330 

6 2,0527 36 440 

7 1,7519 12 622 

8 1,6467 3 710 

9 1,4639 7 800 

10 1,3332 5 554 

11 1,1188 5 910 

 

The diffraction picture in comparison with 

intermediate cubic phase is significantly simplified 

with further temperature increase up to 700K. The part 

of weak reflections disappears and the intensities of 

neogenic peaks increase. By treatment and definition 

by auto-indicating program TOPAS of this phase 

diffraction data it is established that the primitive cubic 

superlatice with parameter a=11.684 Å  at T=700K 
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transforms into face-centered cubic (FCC) phase with 

parameters а=5,96 Å, sp.gr. 𝐹𝑚3̅𝑚, Z=4 (Table 3). 

 
Table 3.  

X-ray diffraction data of Cu3Ni0.5Se2 at temperature 700К. 

 

№ d I/I0 hkl 

1 3,34862 100 111 

2 2,05061 43,5 220 

3 1,74876 9,6 311 

4 1,67431 0,6 222 

5 1,45000 0,5 400 

6 1,33061 1,5 331 

7 1,29692 1 420 

 
 

Correcting the equilibrium temperature between 

polymorpous modifications by extinction method and 

appearance of diffraction reflections (at increase and 

decrease of the temperature) it is established that 

rhombohedral α-phase of Cu3Ni0.5Se2 at Т=560±3К 

room-temperature two-phase system transforms into 

cubic β-phase (a=11.8844 Å) of 𝑃𝑎3̅ symmetry.      

 

CONCLUSION 

 
As it is mentioned above, authors [5] show that 

Cu3Se2 umangite forms at interaction of    Cu2-хSe and 

CuSe at temperature 408K. It decomposites on Cu2-хSe 

и CuSe at heating higher T=408K. Note that results of 

the given investigation of phase transitions show that 

implantation of Ni atoms into umangite increases 

Cu3Ni0.5Se2 stability and it is stable up to Т=567 К. 

Higher this temperature the cubic superlatice 

transforms into FCC lattice with parameter а=5,96 Å. 

One can suppose that the implantation of Ni bivalent 

atoms in umangite composition prevents the oxidation 

of Cu atoms up to bivalent state.

   

_____________________________ 
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Nonlinear absorption of light and its time evolution in InSe under the influence of picoseconds laser excitation have 

been investigated experimentally. It was shown that the decrease in exciton absorption in InSe at high levels of optical 

excitation due to the exciton – exciton interaction and screening of the Coulomb potential by free carriers, generated by laser 
light. Observations of induced absorption in the energy region between the exciton level and the edge of the conduction band 

are associated with the appearance of a continuum of states due to a shift in the edge of the energy band. 

 

Keywords: InSe, nonlinear absorption, zone renormalization 
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1. INTRODUCTION 
 

As you know, the interaction of light waves of 

high power and high monochromaticity with matter, 

lead to the emergence of a new field of physics - 

nonlinear optics. In turn out that under sufficiently 

strong excitation the optical properties of basically all 

semiconductors exhibit nonlinear characteristics. They 
may give rise to effects such as excitation-dependent 

absorption and refraction, nonlinear wave mixing, 

optical bistability, harmonic generation, parametric 

light generation, multiphoton absorption, band filling, 

band renormalization, thermal nonlinearities, or other 

optical instabilities. Some of these effects have 

attracted considerable attention, since the may be 

useful for applications in optical switching devices, 

optical logic gates, or even optical computing. A 

variety of experimental methods have been employed 

to study mechanisms responsible for optical 

nonlinearities in the absorption spectra and to measure 

the nonlinear refractive indices in semiconductors. 

Pump-probe spectroscopy, nonlinear interferometry, 

beam-distortion measurements, four-wave mixing and 

phase conjugation are among these techniques [1–4].  

InSe crystals belonging to III-VI compounds 
semiconductors have received considerable attention 

recently as an interesting class of nonlinear optical 

materials. Due to the layered structure, crystal 

structure features, high polarizability, optical 

uniformity, the presence of natural mirror surfaces, 

strong and broadband light absorption in a wide 

frequency range, the presence of exciton absorption 

with a fairly high binding energy (~ 25 meV), the 

possession of the band gap areas of generation of 

modern lasers, a variety of nonlinearity mechanisms 

and the existence of developed technology for 

producing perfect crystals makes InSe crystals popular 

in quantum electronics. This article is an experimental 

study of the renormalization of bands in InSe crystals 

at high levels of optical excitation. 

 

2. EXPERIMENTAL METHODS 
 

Indium selenide has a layered structure, where 

each layer contains two indium and two selenium 

close-packed sublayers in the stacking sequence           

Se-In-In-Se [5]. The bonding between two adjacent 

layers is of the Van der Waals type, while within the 

layer the bonding is predominantly covalent. The 

investigated InSe crystals were obtained by the 

Bridgman method. The ingot were cleaved along the 

planes of layers ( to the c-axis), obtaining slices 

about 10-50 m  thick. Mobility and concentration of 

charge carriers measured by conventional methods at 

room temperature were µn 1,2×103 sm2/V·s and 

n=7×1014 sm-3, respectively.  

In our experiments, we used a picosecond YAG: 

ND3 laser, generating light pulses of 25 ps duration, 

operating in the mode synchronization mode, as a 

light source. After amplification, the light pulse was 

split into two: the first, converted in the KDP crystal 

into a light pulse with a double 

frequency )34,2 эВH  , served as an excitation 

source, the second was converted into a light pulse 

with a wide spectral distribution when passing through 

a cell with heavy water (0.75 ÷1.5) μm. The time 
delay between the probe light pulse and the pump 

pulse was carried out by changing the path length of 

the pump pulse. The zero delay was determined by 

measuring the correlation function of the pump pulse 

and the probe pulse by m of up-conversion in a KDP 

crystal The spectral distribution of the probe pulse 

transmitted through the InSe sample was studied using 

an M833 automatic double-dispersion monochromator 

(spectral resolution ~0.024 nm at a wavelength of     

600 nm), with a detector detecting radiation in the 

length range waves of 350 - 2000 nm, a storage 

oscilloscope ((Le Croy 9400) and a computer system 

(board Master 800 ABI 8). The exciton absorption 

spectra and the dynamics of nonlinear absorption of 

light were studied at T = 4.2 K using the pump-probe 

spectroscopy method. In this case, the crystal was 

excited by an intense light pulse     = 2.34 eV and 

the absorption spectra were recorded using a probe 

pulse at different instants of time. The experimental 

setup is shown in Figure 1. 
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Fig. 1. Schematic of an experimental setup for measuring the transmission spectra of InSe crystals: 1-YAG: Nd3 laser,  
            2-crystal KDR, 3-optical filters, 4-lens, 5-sample, 6- delay time, 7-cell with heavy water (deuteroxide),  

            8-monochromator, 9-detector, 10-oscilloscope, 11-computer system. 

 

3. EXPERIMENTAL RESULTS AND 

DISCUSSION 
  

Figure 2a shows the spectral dependence of the 

optical density of InSe crystals at various excitation 

intensities (there is a zero time delay between the 

pump pulse and the probe pulse). As can be seen from 

the figure, nonlinear absorption is observed in the 

exciton absorption region ( 336,1 eV) and the 

sample is bleached at the indicated radiation frequency 

at high excitation levels. The observed bleaching is 

saturated at an incident light intensity of                         

 600 MW/sm2. The characteristic absorption length 

of the pump radiation is 
410/1   sm, =104 

sm-1 for  34,2 eV.   

Figure 2b shows the absorption spectra of InSe 

crystals for various time delays between the probe 

pulse and the pump pulse. A broadening of the 

spectral line and a shift in the maximum of exciton 

absorption to the region of high energies relative to 

the unexcited state are observed. In the energy region 

between the exciton level and the edge of the 

conduction band, induced absorption appears. 

 

 
 

Fig. 2. a) absorption spectra of InSe at various excitation intensities   Ipump (MW/ sm2): 1 - 0, 2-12, 3-60, 4-250, 5-600 (there 

is zero time delay between the pump pulse and the probe pulse,  t = 0) at T = 4.2K, b) absorption spectra of InSe 

for various time delays between the pump pulse and the probe pulse:  1 - Ipump  = 0, 2 -  t = 24 ps, 3 -  t = 98 ps,  

             4 -  t = 297ps, 5-  t = 660ps,  6-  t = 910ps, Ipump = 600 MW/sm2,   pump = 2.34 eV, T = 4.2 K. 

 

The time dynamics of bleaching in the region of 

exciton absorption and induced absorption has its own 

characteristic features (Fig. 3, a, b). It was 

experimentally established that the bleaching in the 

exciton absorption region is characterized by a rise 

front in time of ~ 60 ps, and the decay has a fast and 

slow kinetics (Fig. 3, a). The kinetics of induced 

absorption in the energy region between the exciton 

level and the edge of the conduction band is shown in 

Fig. 3, b. Note that at high excitation levels 

(I~600MW/sm2), a probe pulse is amplified and the 

rise front is characterized by a time of ~ 60 ps. The 

maximum of the induced absorption is reached over 

the time of ~200300ps and with an increase in the 

pump intensity, shifts toward longer times. 
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Fig. 3. Dependence of the optical density InSe on the delay time between the pump pulse and the probe pulse (t). a) at the 

maximum of the exciton absorption,  probe = 1.336 eV,  pump= 2.34 eV, T = 4.2 K; 1- Ipump= 100 MW/sm2,               

2- Ipump= 200 MW/sm2; b) in the absorption continuum,  probe = 1.340 eV,    pump = 2.34 eV, T = 4.2 K; 1- 

Ipump = 100 MW/sm2, 2- Ipump = 200 MW/sm2,       3- Ipump = 300 MW/sm2, 4- Ipump = 400 MW/sm2. 

 

In our opinion, nonlinear absorption is observed 

in InSe crystals at high levels of optical excitation in 
the exciton absorption region. The observed features 

in the InSe absorption spectra can be explained by the 

interaction of excitons and the screening of the 

Coulomb potential by free carriers generated by laser 

radiation. Indeed, when InSe crystals are excited by 

laser light, electrons and holes bind to excitons. 

Subsequently, with an increase in the excitation 

intensity, the density of excitons increases, and when 

it reaches a certain critical value, an interaction 

between excitons occurs, which leads to the decay of 

excitons and the formation of free electron-hole pairs. 

This phase transition is called the Mott criterion for 

excitons 6 
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Knowing the effective masses of electrons and holes 

(me=0.7m0, mh =0.5 m0), as well as the Bohr radius of 

the exciton aex.= 3.7 nm in InSe, we can calculate the 

exciton concentration, which turned out to be equal to 

nМотт 
316105,2  см . Experiments show that in InSe 

the density of pairs generated by laser light with an 

intensity of I0=1,5х1026 photon/sm2 ·s,  ~104 sm-1 

and duration of t=2,5х10-11 s is 

 

n =  I0t = 3,8х1019 sm-3                        (2) 

 

As can be seen from a comparison of formulas 

(1) and (2), the values of the concentration of 

nonequilibrium carriers obtained by us are three orders 

of magnitude higher than the exciton density required 

for the Mott transition. 

We also determined the screening length of the 

Coulomb interaction by free carriers. The shielding 

length can be determined using the following    

formula 7 

2/1

2/1
6/16/1)3/(2/




em

NL


              (3) 

where  is the dielectric constant of the crystal, m is 

the effective mass, and N is the concentration of the 

generated carriers. 

Substituting the values of the corresponding 

parameters of InSe crystals, we find that the screening 

length L  10Aº is much smaller than the radius of the 

exciton. The Bohr radius of the exciton in InSe is  

37Aº. 

As can be seen from Fig. 2b, at a light intensity 

of Ipump600MW/sm2, the complete disappearance of 

the exciton absorption line was not detected. This, 

apparently, is associated with inhomogeneous 

excitation of the sample at        pump=2.34eV. Thus, 

a situation is experimentally realized when both the 

electron-hole plasma (EHP) and the dense exciton gas 

are present in the sample. 
Since the decrease in exciton absorption is due to 

the interaction of excitons and the screening of the 

Coulomb potential by free carriers, the increase in the 

transmission of the probe pulse should be proportional 

to the integrated pulse intensity, i.e. the rise time of 

enlightenment should be of the order of the pulse 

duration (see Fig. 3, a, b). On the other hand, the 

tightening of the leading front of enlightenment may 

be due to the diffusion of nonequilibrium carriers. 

Initially, the generation of free carriers occurs in a thin 

layer of 10-4 sm, subsequently, electrons and holes 

diffuse deep into the sample, thereby reducing exciton 

absorption. The ambipolar diffusion coefficient in 

InSe is <10 sm2/s; therefore, the time scale of carrier 

redistribution due to diffusion over the sample is more 

than     1 ns, which indicates an insignificant effect of 

the diffusion process. 

It seems that a rapid decrease in the bleaching 

(see Fig. 3, a) is mainly associated with recombination 
processes in the electron – hole pair and dense exciton 
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gas. Slow kinetics is possibly determined by the 

screening process of excitons of the direct zone by 

nonequilibrium carriers of the indirect zone (the 

lifetime of these carriers is 10-7 s). 

Another consequence that exciton interaction and 

screening of the Coulomb potential by free carriers 

generated by laser radiation can lead to is a decrease 

in the bandgap or renormalization of bands in InSe at 

high levels of optical absorption. In our opinion, our 

observation of induced absorption in the energy region 

between the exciton level and the edge of the InSe 

conduction band is associated precisely with the 

appearance of a continuum of states due to a shift in 

the edge of the energy band (see Fig. 2, b)8. As a 

result of the renormalization of the forbidden zone the 

energies of the electrons and holes in their respective 

bands are reduced. This energy reduction is a 

consequence of the exchange effect for particles with 

equal spin and Coulomb correlation effect for all 

particles. The exchange effect is caused by the Pauli 
exclusion principle. The probability that two Fermions 

with identical quantum numbers are at the same point 

in real space is zero. For increasing separation 

between the particles, the probability slowly 

approaches unity. Hence, the Pauli exclusion leads to 

a reduction of the probability that equally charged 

particles come close to each other and this in turn 

reduces the repulsive (i.e., positive Coulomb energy) 

contribution. This situation for particles with equal 

spins is often described by the presence of an 

“exchange hole”, where each Fermion is surrounded 

by a region where the probability for the existence of 

another identical Fermion is very small. 

Correspondingly, equally charged Fermions with 

different quantum numbers (e.g., electrons with 

different spins) avoid each other because of the 

Coulomb repulsion. As in the case of the exchange 
hole, this “Coulomb hole” also leads to a decrease of 

the overall energy.  

A good approximation for the bandgap reduction 

is 

 

   )()()()()(
00

qfqfqVqVqVE he

q

s

q

sg  


 ]                    

(4) 

where the first and second terms are called the 

“Coulomb-hole” and “screened-exchange” 

contributions, respectively. Here )(qV  and 

)(qVs are the Fourier transform of the unscreened 

and screened Coulomb potentials, respectively.  The 

renormalized bandgap is then  
 

ggg EEE /
                               (5) 

 

with 0gE  [the first term in Eq. (4) has a negative 

sign since the screened Coulomb potential is smaller 

than the bare Coulomb potential, )()( qVqVs  ].  

The bandgap shift when the concentration of 

excitons is high enough and their collective properties 

must be taken into account. More specifically, we are 

talking about such concentrations nex., at which the 

value 
3/13

эк.эк. )( an   begins to approach unity, i.e. the 

average distance between excitons becomes 

comparable with their radius. The bandgap shift 

depends on the distance sr  
between two excitons 
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With decreasing sr  
renormalization of zones 

increases. 

We see that the screened exchange and the 

Coulomb-hole contributions both increase with 

increasing carrier density (decreasing particle 

separation). For low carrier densities, the dominating 

contribution comes from the Coulomb-hole term, 

whereas at elevated densities, both terms are equally 

important. An often useful approximation for the 
bandgap reduction has been derived in [9]  
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where BE  is the exciton Rydberg energy and 
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Bandgap reduction leads to a monotonous red 

shift of the onset of the continuum absorption in 

semiconductors. At the Mott density the bandgap has 

shifted one exciton Rydberg energy below the zero-

density bandgap Eg. For even higher densities, 

bandgap renormalization may cause increasing 

absorption in the spectral region below the exciton 

resonance. Whether such an increasing absorption is 

visible in an experimental spectrum depends on the 

magnitude of the bandgap renormalization versus the 

increasing chemical potential due to the bandfilling 

effect.  

Qualitatively, the renormalization of zones can 

be explained as follows. Due to inhomogeneous 

excitation near the front surface, the density of 

nonequilibrium carriers is high and the Fermi level is 

in the renormalized zone. The contribution of this 
region of the sample to the transmission of the probe 

pulse leads to its increase. In the same part of the 

sample where the Fermi level does not lie in the zone, 

the probe pulse is absorbed. Subsequently, due to 

recombination processes in the electron – hole pair, 

the plasma density and the corresponding interval 

between the Fermi quasilevels decrease, which leads 

to an increase in the absorption of the probe pulse. An 

additional confirmation of this is the fact that the rise 

time of the induced absorption is of the order of the 

time of a rapid decay of the bleaching in the exciton 

absorption region (Fig. 3, a). The disappearance of 

induced absorption is associated with a further 

decrease in the concentration of nonequilibrium 

carriers. 
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CONCLUSION 

 
In InSe layered crystals, the absorption spectra 

and its time evolution at various laser intensities were 

studied by the method of pump-probe spectroscopy. It 

is shown that the bleaching in the region of exciton 

absorption is due to the screening of the Coulomb 

potential by free carriers and the exciton-exciton 

interaction. Experiments show that the density of pairs 

generated by laser light      (~ 4.5x1019cm-3) in InSe is 

three orders of magnitude higher than the exciton 

density required for the Mott transition in these 

crystals (nМотт
316105,2  см ). An estimate shows 

that the screening length of the Coulomb potential by 

free carriers (L10Aº) is much shorter than the Bohr 

radius of the exciton ( 37Aº) in InSe. In the energy 
region between the exciton level and the edge of the 

conduction band, induced absorption is detected. The 

reason for this absorption is the renormalization of 

bands in InSe at high levels of optical excitation. 
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In this paper, we prove a new limit relation between the pseudo-Jacobi polynomials and Hermite polynomials with shifted 

argument. 
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1. NEW GENERALIZED FREE HAMILTONIAN 

In paper [1], we proposed a new generalized free Hamiltonian with position-dependent mass 𝑀 = 𝑀(𝑥) for 

the describing the dynamical quantum systems. This Hamiltonian has the form 

 

                        𝐻0  =
1

4𝑁
 ∑ (𝑀𝛼𝑝̂ 𝑀𝛽𝑝̂𝑀𝛾 + 𝑀𝛾𝑝̂ 𝑀𝛽𝑝̂𝑀𝛼)𝑁

𝑖=1 .                                            (1) 

 

It is compatible with Galilean invariance [2] and can be represented in the form  

 

𝐻0 = −
ℏ2

2𝑀
𝜕𝑥

2 +
ℏ2𝑀′

2𝑀2
𝜕𝑥 + 𝐴𝑁

𝑀′2

𝑀3
+ 𝐵𝑁

𝑀′′

𝑀2
,                                (2) 

 

where for the coefficients 𝐴𝑁 and  𝐵𝑁  we have the expressions 

 

𝐴𝑁 =
ℏ2

2𝑁
𝐴,   𝐴 = ∑(𝛼𝑖 + 𝛾𝑖 + 𝛼𝑖𝛾𝑖),

𝑁

𝑖=1

 

                                                 𝐵𝑁 = −
ℏ2

4𝑁
𝐵,   𝐵 = ∑ (𝛼𝑖 + 𝛾𝑖).𝑁

𝑖=1                                         (3)  

                  
Note that all Hamiltonians used in the literature to describe the quantum dynamics 

of particles with mass dependent on the position [2-17]. Further, in the paper [1] on the basis of the Schrödinger 

equation, we constructed an exactly solvable model of a linear harmonic oscillator. The wave functions of this 

model are expressed in terms of pseudo Jacobi polynomials 𝑃𝑛(𝑥; 𝜈, 𝑁). The model mass function contains some 

parameter 𝑎. Purpose of this paper is to prove that in the limit 𝑎 → ∞  the pseudo Jacobi polynomials go over to 

the Hermite polynomials with a shifted argument  𝐻𝑛 (𝑧 − 𝑧0). 

 

2. BASİC FORMULAS 
 

Pseudo Jacobi polynomials are defined in terms of hypergeometric functions as follows [18,19] 

 

𝑃𝑛(𝑥; 𝑣, 𝑁) =
(−2𝑖)𝑛(−𝑁+𝑖𝜈)𝑛

(𝑛−2𝑁−1)𝑛
 𝐹1 (

−𝑛, 𝑛 − 2𝑁 − 1
−𝑁 + 𝑖𝜈

;
1−𝑖𝑥

2
) ,2  𝑛 = 0,1,2, … , 𝑁              (4) 

 

and satisfy the orthogonality relation 

1

2𝜋
∫(1 + 𝑥2)−𝑁−1𝑒2𝜈 arctanx𝑃𝑚(𝑥; 𝜈, 𝑁)

∞

−∞

𝑃𝑛(𝑥; 𝜈, 𝑁) = 

                           =
Γ(2𝑁+1−2𝑛)Γ(2𝑁+2−2𝑛)22𝑛−2𝑁−1𝑛!

Γ(2𝑁+2−𝑛)|Γ(𝑁+1−𝑛+𝑖𝜈)|2
𝛿𝑛𝑚 .                                      (5) 

 

We also write down for them a differential equation  

 

(1 + 𝑥2)𝑦 ,,(𝑥1 + 2(𝜈 − 𝑁𝑥)𝑦 ,(𝑥) − 𝑛(𝑛 − 2𝑁 − 1))𝑦(𝑥) = 0, 𝑦(𝑥) = 𝑃𝑛(𝑥; 𝜈, 𝑁)           (6)                                       
Similar formulas for the Hermite polynomials are 
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                                          𝐻𝑛(𝑥) = (2𝑥)𝑛
2𝐹0 (−

𝑛

2
, −

(𝑛−1)

2
; −

1

𝑥2

−
),                                      (7)   

 

                                ∫ 𝑒−𝑥2
𝐻𝑚(𝑥)𝐻𝑛(𝑥)𝑑𝑥 = 2𝑛(𝑛!)

∞

−∞ √𝜋𝛿𝑚𝑛,                                             (8) 

 

                                      𝑦 ,,(𝑥) − 2𝑥𝑦 ,(𝑥) + 2𝑛𝑦(𝑥) = 0,    𝑦(𝑥) = 𝐻𝑛(𝑥).                             (9) 
 

3. THEOREM 

The following limit relation holds between the pseudo Jacobi and Hermite polynomials 
 

                               lim
𝑁→∞

2𝑛𝑁
𝑛

2𝑃𝑛 (
𝑥

√𝑁
;  𝜈√𝑁, 𝑁) = 𝐻𝑛(𝑥 − 𝜈).                                             (10) 

 

We will prove this theorem in two ways. 

Proof 1.  To prove (2), we will use the recurrence relations for the pseudo Jacobi and Hermite polynomials 

[18,19], which have the form   

 

                             𝑃𝑛+1(𝑥; 𝜈, 𝑁) = 𝐴𝑛𝑃𝑛(𝑥; 𝜈, 𝑁) + 𝐵𝑛𝑃𝑛−1(𝑥; 𝜈, 𝑁),                                 (11) 

                         

𝐻𝑛+1(𝑧) = 2𝑧𝐻𝑛(𝑧) − 2𝑛𝐻𝑛−1(𝑧),                                           (12) 
where  

             𝐴𝑛(𝑥, 𝜈) = 𝑥 −
𝜈(𝑁+1)

(𝑛−𝑁−1)(𝑛−𝑁)
,  𝐵𝑛(𝜈) = −

𝑛(𝑛−2𝑁−2)(𝑛−𝑁−1−𝑖𝑣)(𝑛−𝑁+1+𝑖𝑣)

(2𝑛−2𝑁−3)(𝑛−𝑁−1)2(2𝑛−2𝑁−1)
.      (13)          

Let be 

 

                  𝑄𝑛 = 2𝑛𝑁
𝑛

2⁄ 𝑃𝑛 (
𝑥

√𝑁
; 𝜈√𝑁, 𝑁)  and        𝑄̅𝑛 = lim

𝑁→∞
𝑄𝑛.                                      (14) 

 

Then from (11) we obtain the following recurrence relation for the polynomials 𝑄𝑛 

 
𝑄𝑛+1 = 𝐴̅

𝑛𝑄𝑛 + 𝐵̅𝑛𝑄𝑛−1,                                                 (15) 
where 

  𝐴̅
𝑛 = 2√𝑁 𝐴𝑛 (

𝑥

√𝑁
; 𝜈√𝑁), 𝐵̅𝑛 = 4𝑁𝐵𝑛(𝜈√𝑁).                          (16) 

 

Since lim
𝑁→∞

𝐴̅𝑛 = 2(𝑥 − 𝜈)  and lim
𝑁→∞

𝐵̅𝑛 = −2𝑛, then passing to the limit 𝑁 → ∞ in (15) we come to 

 

𝑄̅𝑛+1 = 2(𝑥 − 𝜈)𝑄̅𝑛 − 2𝑛𝑄̅𝑛−1.                                                             (17) 

 

And this coincides with the recurrence relation for the Hermite polynomials (12) for            𝑧 = 𝑥 − 𝜈. Hence, 

𝑄̅𝑛 = 𝐻𝑛 (𝑥 − 𝜈). This completes the proof of (10). 

 

Proof 2. Let us now prove the relation (10) by the method of mathematical induction. To do this, we first write 

explicitly the pseudo Jacobi and Hermite polynomials for the first few values of 𝑛: 

 

                                            𝑃0(𝑥; 𝜈, 𝑁 ) = 1,  𝑃1(𝑥; 𝜈, 𝑁) = 𝑥 −
𝜈

𝑁
,   

 

𝑃2(𝑥; 𝜈, 𝑁) = [𝑥 −
𝜈(𝑁 + 1)

𝑁(𝑁 − 1)
] (𝑥 −

𝜈

𝑁
) −

𝑁2 + 𝜈2

𝑁2(2𝑁 − 1)
, 

 

                                              𝐻0(𝑧) = 1      𝐻1(𝑧) = 2𝑧      𝐻2(𝑧) = 4𝑧2 -2.                   (18) 

 
Using the explicit form of polynomials (18), we can directly verify that for n = 1 and 2, relation (10) is true, i.e. 
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lim
𝑁→∞

2√𝑁 𝑃1 (
𝑥

√𝑁
; 𝜈√𝑁, 𝑁) = 𝐻1(𝑥 − 𝜈), 

                                    

                                          lim
𝑁→∞

22𝑁 𝑃2 (
𝑥

√𝑁
; 𝜈√𝑁, 𝑁) = 𝐻2(𝑥 − 𝜈).                        (19) 

 

Assuming now that our relation (10) is true for n, we see that then it is true for n + 1 as well. Indeed, we have 

  

lim
𝑁→∞

2𝑛+1𝑁
𝑛+1

2 𝑃𝑛+1 (
𝑥

√𝑁
; 𝜈√𝑁, 𝑁) = 

 

= lim
𝑁→∞

2√𝑁𝐴𝑛 (
𝑥

√𝑁
, 𝜈√𝑁) lim

𝑁→∞
2𝑛𝑁

𝑛
2𝑃𝑛 (

𝑥

√𝑁
; 𝜈√𝑁, 𝑁) + 

        

+ lim
𝑁→∞

4𝑁𝐵𝑛(𝜈√𝑁) lim
𝑁→∞

2𝑛−1𝑁
𝑛−1

2 𝑃𝑛−1 (
𝑥

√𝑁
; 𝜈√𝑁, 𝑁) = 2𝑧𝐻𝑛(𝑧) − 2𝑛𝐻𝑛−1(𝑧). 

 
Therefore, according to (18), we can write 

                                 

lim
𝑁→∞

2𝑛+1𝑁
𝑛+1

2 𝑃𝑛+1 (
𝑥

√𝑁
; 𝜈√𝑁, 𝑁) = 𝐻𝑛+1(𝑧), 𝑧 = 𝑥 − 𝜈. 

 

Hence, the limit relation (10) is also true for all values of n. This completes the second proof of the theorem. 

_______________________________ 
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1. INTRODUCTION 
 

The number of exactly solvable problems in 
quantum mechanics is limited, but they play an 
important role in the study of the properties of various 
dynamical systems. This is, firstly, due to the fact that 
the exact solutions play the role of the foundation on 
which the solution of many other problems is built, 
secondly, they allow, from the point of view of 
symmetry, to understand their essence, and thirdly, they 
themselves can have directly various applications in 
many areas of theoretical physics. It should also be 
noted that exactly solvable problems are also 
interesting from the point of view of mathematics, since 
in many cases they can lead to the establishment of new 
properties of various special functions. For example, 
the problem of a harmonic oscillator, being exactly 
solvable, is widely used in atomic and nuclear physics, 
in the theory of crystals, in quantum field theory, etc. 
[1-4]. For this reason, the construction of exactly 
solvable quantum mechanical models, including 
models of a harmonic oscillator, for describing various 
physical systems has always attracted and continues to 
attract the attention of physicists [5-11]. 

On the other hand, various quantum mechanical 
systems described by the Schrödinger equation in cases 
where the Hamiltonian of the system contains the 
position-dependent mass [12-29]. These systems have 
found applications in a wide range of fields of the 
material science and condensed matter physics. A 
number of papers [14, 17, 19, 20, 22-29] are devoted to 
the construction of exactly solvable potentials for the 
Schrödinger equation with the position-dependent mass 
mass, and in [15] was obtained exact solution of the 
Dirac equation for a charged particle with position-
dependent mass in the Coulomb field.   

Our goal is to construct a quantum-mechanical 
exactly solvable model of a linear harmonic oscillator 
with the the position-dependent mass in an external 
uniform gravitational field. Our construction is based 
on the Schrödinger equation with a free Hamiltonian, 

generalizing the free Hamiltonian von Roos with the 
position-dependent mass. We show that the wave 
functions of our model are expressed in terms of 
pseudo-Jacobi polynomials. For this reason, we will 
call it the pseudo-Jacobi oscillator. 

This article is organized as follows. Section 2 
contains brief review of the nonrelativistic quantum-
mechanical linear harmonic oscillator model. 
 
2. NONRELATIVISTIC LINEAR HARMONIC 

OSCILLATOR WITH CONSTANT MASS 
 

Let us write the one-dimensional Schrödinger 
equation describing the motion of a nonrelativistic 
quantum particle with constant mass 𝑚𝑚0 in the external 
field 𝑉𝑉(𝑥𝑥). 

It has the form 
 

           � 𝑝𝑝�
2

2𝑚𝑚𝑒𝑒
+ 𝑉𝑉(𝑥𝑥)�𝜓𝜓(𝑥𝑥) = 𝐸𝐸𝐸𝐸(𝑥𝑥),        (2.1) 

                                             
where 𝑝̂𝑝 = −𝑖𝑖𝜕𝜕𝑥𝑥 is the momentum operator. A linear 
harmonic oscillator with frequency ω corresponds to 
the following potential energy 
 

                    𝑉𝑉(𝑥𝑥) = 𝑚𝑚0𝜔𝜔2𝑥𝑥2

2
.                (2.2)   

                                             
Let us rewrite equation (2.1) with potential (2.2) as 
 

𝑑𝑑2𝜓𝜓
𝑑𝑑𝑥𝑥2

+ 2𝑚𝑚0
ℏ2

�𝐸𝐸 − 𝑚𝑚0𝜔𝜔2𝑥𝑥2

2
�𝜓𝜓 = 0.      (2.3)                                       

 
The solution and energy spectrum of this equation are 
well known [1] 
 

𝜓𝜓𝑛𝑛0𝑆𝑆(𝑥𝑥) = 𝐶𝐶𝑛𝑛0𝑆𝑆𝑒𝑒−
1
2𝜆𝜆0

2𝑥𝑥2𝐻𝐻𝑛𝑛(𝜆𝜆0𝑥𝑥), 
 

      𝐸𝐸𝑛𝑛0𝑆𝑆 = ℏ𝜔𝜔 �𝑛𝑛 + 1
2
� , 𝑛𝑛 = 0,1,2, …,  (2.4)  
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where 𝐻𝐻𝑛𝑛(𝑥𝑥) are Hermite polynomials, and 
 𝜆𝜆0 = �𝑚𝑚0𝜔𝜔 ℏ⁄ .  Normalizing constants 
 

𝐶𝐶𝑛𝑛0𝑆𝑆 =
𝐶𝐶00𝑠𝑠

√2𝑛𝑛𝑛𝑛!
, 

  𝐶𝐶00𝑆𝑆 = �𝜆𝜆0
2

𝜋𝜋
�
1
4�

= �𝑚𝑚0𝜔𝜔
𝜋𝜋ℏ

�
1
4�              (2.5)   

                     
found from the orthogonality condition for the Hermite 
polynomials [30, 31] 

       
  ∫ 𝑒𝑒−𝑥𝑥2∞

−∞ 𝐻𝐻𝑚𝑚(𝑥𝑥)𝐻𝐻𝑛𝑛(𝑥𝑥)𝑑𝑑𝑑𝑑 = √𝜋𝜋2𝑛𝑛𝑛𝑛! 𝛿𝛿𝑛𝑛𝑛𝑛.                                     (2.6) 
 
3. GENERALIZED FREE HAMILTONIAN 

WITH THE POSITION-DEPENDENT MASS 
 

In this paper, we will construct a new model of a 
nonrelativistic linear harmonic oscillator, namely with 
the position-dependent mass pseudo-Jacobi oscillator. 
It should be noted that the construction of models of 
quantum physical systems with the position-dependent 
mass 𝑀𝑀 ≡ 𝑀𝑀(𝑥𝑥) starts with choosing the form of the 
free Hamiltonian to describe the position-dependent 
mass systems and with the subsequent selection of the 
mass function 𝑀𝑀(𝑥𝑥). The point is that due to the non-
commutativity of the momentum operators 𝑝̂𝑝 = −𝑖𝑖ℏ𝜕𝜕𝑥𝑥 
and the function 𝑀𝑀(𝑥𝑥), the question arises of their 
ordering in the expression for the free Hamiltonian 

 

𝐻𝐻0 = 1
2𝑀𝑀(𝑥𝑥)

 𝑝̂𝑝2.                (3.1) 

                                                            
In this regard, we note that this issue was analyzed in 
[13], where it is proposed to restrict ourselves to a 
specific class of the form of the Hamiltonian with the 
position-dependent mass. According to this paper the 
free Hamiltonian operator must depend only on the 

mass function 𝑀𝑀(𝑥𝑥). Accordingly, it will take the 
following general form  
 

    𝐻𝐻0  = 1
2
𝑝̂𝑝 1
𝑀𝑀(𝑥𝑥)  𝑝̂𝑝 + 𝑊𝑊kin(𝑥𝑥),            (3.2)    

                                 
with the condition that the term   𝑊𝑊kin  be a functional 
of  M, possibly involving its derivatives. Further the 
dimensional arguments require this term to be 
homogeneous of degree (-1) in M and of degree (-2) in 
x. Analyticity conditions precluding nonintegral 
powers of the derivatives of M and, finally, the 
condition that for a constant function 𝑀𝑀(𝑥𝑥) = 𝑚𝑚 one 
recovers the usual expression, implying that the 
derivatives of M must appear with positive (integral) 
powers, lead to two possible terms only in 𝑊𝑊kin:   
 

                𝑊𝑊kin = 𝐴𝐴1
𝑀𝑀′2

𝑀𝑀3 + 𝐵𝐵1
𝑀𝑀′′

𝑀𝑀2  .           (3.3)  
                                                                                                                     
In this paper is also stated that under the above 
conditions the most general free Hamiltonian is 
precisely the von Roos Hamiltonian of the form [12] 

                                        
𝐻𝐻0  = 1

4
 �𝑀𝑀𝛼𝛼𝑝̂𝑝 𝑀𝑀𝛽𝛽𝑝̂𝑝𝑀𝑀𝛾𝛾 +  𝑀𝑀𝛾𝛾𝑝̂𝑝 𝑀𝑀𝛽𝛽𝑝̂𝑝𝑀𝑀𝛼𝛼�,                                   (3.4) 

 
where the real parameters 𝛼𝛼,𝛽𝛽 and 𝛾𝛾 satisfy the natural 
condition 𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 = −1,  but otherwise they are 
arbitrary. The von Roos free Hamiltonian (3.4) has the 
form (3.2) with (3.3), where the coefficients  𝐴𝐴1 and 𝐵𝐵1 
are 

𝐴𝐴1 = 1
2

(𝛼𝛼 + 𝛾𝛾 + 𝛼𝛼𝛼𝛼),𝐵𝐵1 = −1 
4

(𝛼𝛼 + 𝛾𝛾). (3.5) 
                                                                                    

In this section, we propose a new (generalized) free 
Hamiltonian to solve the problems with mass 
depending on the position as  

                            
   𝐻𝐻0 = 1

4𝑁𝑁
∑ �𝑀𝑀𝛼𝛼𝑖𝑖𝑝̂𝑝𝑀𝑀𝛽𝛽𝑖𝑖𝑝̂𝑝𝑀𝑀𝛾𝛾𝑖𝑖 + 𝑀𝑀𝛾𝛾𝑖𝑖𝑝̂𝑝𝑀𝑀𝛽𝛽𝑖𝑖𝑝̂𝑝𝑀𝑀𝛼𝛼𝑖𝑖�,𝑁𝑁
𝑖𝑖=1                          (3.6) 

 
where 𝑁𝑁 = 1,2,3 … is an arbitrary positive integer and 
the parameters 𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖, 𝛾𝛾𝑖𝑖  (𝑖𝑖 = 1,2, … ,𝑁𝑁) satisfy the 
conditions(3.7) 
𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖 = −1, 𝑖𝑖 = 1,2, … ,𝑁𝑁.                                         
The Hamiltonian (3.6) is more general than the 
Hamiltonian (3.4) von Roos [12] and the Hamiltonian 
 

𝐻𝐻0 = 1
6
�1
𝑀𝑀
𝑝̂𝑝2 + 𝑝̂𝑝 1

𝑀𝑀
𝑝̂𝑝 + 𝑝̂𝑝2 1

𝑀𝑀
�,        (3.8)  

proposed in [24]. Consequently, the free Hamiltonians 
used in the literature [12-29] for dynamical systems 
with the position-dependent mass are special cases 
(3.6). For example, for 𝑁𝑁 = 3, 𝛼𝛼1 = −1,    𝛽𝛽1 = 𝛾𝛾1 =
0, 𝛼𝛼2 = 𝛾𝛾2 = 0,  𝛽𝛽2 = −1  and  𝛼𝛼3 = −1, 𝛽𝛽3 = 𝛾𝛾3 =
0 from (3.6) follows (3.8). If we represent (3.6) in the 
form (3.2) and (3.3), i.e. 

 

𝐻𝐻0 = − ℏ2

2𝑀𝑀
𝜕𝜕𝑥𝑥2 + ℏ2𝑀𝑀′

2𝑀𝑀2 𝜕𝜕𝑥𝑥 + 𝐴𝐴𝑁𝑁
𝑀𝑀′2

𝑀𝑀3 + 𝐵𝐵𝑁𝑁
𝑀𝑀′′

𝑀𝑀2 ,                                (3.9) 
 

then for the coefficients 𝐴𝐴𝑁𝑁   and  𝐵𝐵𝑁𝑁 we get the 
following expressions 𝐴𝐴𝑁𝑁 =

ℏ2

2𝑁𝑁
𝐴𝐴,   𝐴𝐴 = �(𝛼𝛼𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝛼𝛼𝑖𝑖𝛾𝛾𝑖𝑖),

𝑁𝑁

𝑖𝑖=1
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  𝐵𝐵𝑁𝑁 = − ℏ2

4𝑁𝑁
𝐵𝐵,   𝐵𝐵 = ∑ (𝛼𝛼𝑖𝑖 + 𝛾𝛾𝑖𝑖).𝑁𝑁

𝑖𝑖=1      (3.10)  
                                     
From the requirement that the Hamiltonian  𝐻𝐻0 (3.6) (or 
(3.9)) be Hermitian, it follows that the coefficients 𝐴𝐴𝑁𝑁 
and  𝐵𝐵𝑁𝑁 (3.10) must be real. Therefore, in the general 
case, the parameters 𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖, 𝛾𝛾𝑖𝑖  (𝑖𝑖 = 1,2, … ,𝑁𝑁) can be 
complex, provided that the relations 𝛾𝛾𝑖𝑖 = 𝛼𝛼𝑖𝑖∗ (𝑖𝑖 =
1,2, … ,𝑁𝑁) are satisfied, i.e. 𝛼𝛼𝑖𝑖 and  𝛾𝛾𝑖𝑖  must be mutually 
complex conjugate. 
      Taking into account now (3.9), the Schrödinger 
equation for quantum systems with the position-
dependent mass in the potential field 𝑉𝑉(𝑥𝑥) is written in 
the form 
 

�𝜕𝜕𝑥𝑥2 −
𝑀𝑀′

𝑀𝑀
𝜕𝜕𝑥𝑥 −

𝐴𝐴
𝑁𝑁
𝑀𝑀′2

𝑀𝑀2 + 𝐵𝐵
2𝑁𝑁

𝑀𝑀′′

𝑀𝑀
+ 2𝑀𝑀

ℏ2
[𝐸𝐸 −

       −𝑉𝑉(𝑥𝑥)]�𝜓𝜓(𝑥𝑥) = 0.                (3.11) 

 
4. PSEUDO-JACOBI OSCILLATOR WITH THE 
POSITION-DEPENDENT MASS 
 

For building pseudo-Jacobi oscillator with the 
position-dependent mass we define position-dependent 
mass function  𝑀𝑀(𝑥𝑥)  as follows 

 

                            𝑀𝑀(𝑥𝑥) = 𝑎𝑎2𝑚𝑚0
𝑎𝑎2+𝑥𝑥2

,              (4.1) 

  

where 𝑎𝑎 > 0  is some parameter with the dimension of 
length. Obviously, in the limit 𝑎𝑎 → ∞  , the dependence 
of the mass (4.1) on the coordinate x disappears, i.e. 
 

                   lim
𝑎𝑎→∞

𝑀𝑀(𝑥𝑥) = 𝑚𝑚0.             (4.2)    
                                           
Let's write the potential energy of our model in the 
usual form 
 

                𝑉𝑉(𝑥𝑥) = 𝑀𝑀(𝑥𝑥) 𝜔𝜔2 𝑥𝑥2

2
.             (4.3)   

                                           
It is also clear that the following limit relations will take 
place both for the generalized free Hamiltonian (3.6) 
(or (3.9)) and for the potential energy of the model (4.3) 
 

lim
𝑎𝑎→∞

𝐻𝐻0 = − ℏ2

2𝑚𝑚0
𝜕𝜕𝑥𝑥2, lim

𝑎𝑎→∞
𝑉𝑉(𝑥𝑥) = 𝑚𝑚0 𝜔𝜔2 𝑥𝑥2

2
.(4.4)  

                           
i.e., in the limit when the model parameter 𝑎𝑎 tends to 
infinity (𝑎𝑎 → ∞ ), these quantities coincide with the 
corresponding quantities of nonrelativistic quantum 
mechanics 
      Substituting the expression for mass (4.1) into 
(3.11), we obtain the Schrödinger equation describing 
the motion of our oscillator model 
 

 
�𝜕𝜕𝑥𝑥2 + 2𝑥𝑥

𝑎𝑎2+𝑥𝑥2
𝜕𝜕𝑥𝑥 −

𝐴𝐴
𝑁𝑁

4𝑥𝑥2

(𝑎𝑎2+𝑥𝑥2)2 + 𝐵𝐵
𝑁𝑁

3𝑥𝑥2−𝑎𝑎2

(𝑎𝑎2+𝑥𝑥2)2 + 2𝑎𝑎2𝑚𝑚0
ћ2(𝑎𝑎2+𝑥𝑥2)

�𝐸𝐸 − 𝑎𝑎2𝑚𝑚0𝜔𝜔2𝑥𝑥2

2(𝑎𝑎2+𝑥𝑥2)
��𝜓𝜓 = 0.          (4.5) 

 
In terms of the new dimensionless variable ξ = 𝑥𝑥

𝑎𝑎
, the 

equation (4.5) takes the form  
 
 

               �𝜕𝜕𝜉𝜉2 + 𝜏𝜏�
𝜎𝜎
𝜕𝜕𝜉𝜉 + 𝜎𝜎�

𝜎𝜎2
�𝜓𝜓 = 0,      (4.6)  

                                            
where we have introduced the following notations  𝜏̃𝜏 =
2𝜉𝜉,  𝜎𝜎 = 1 + 𝜉𝜉2,   𝜎𝜎� = 𝑐𝑐0 − 𝑐𝑐2𝜉𝜉2. For the coefficients 
𝑐𝑐0 and 𝑐𝑐2 we have  
 

𝑐𝑐0 = 2𝑎𝑎2𝑚𝑚0𝐸𝐸
ћ2

− 𝐵𝐵
𝑁𝑁

, 

𝑐𝑐2 = 𝑎𝑎4𝑚𝑚0
2𝜔𝜔2

ћ2
− 2𝑚𝑚0𝑎𝑎2𝐸𝐸

ћ2
− 𝐴𝐴2

𝑁𝑁
, 

 
         𝐴𝐴2 = ∑ (𝛼𝛼𝑖𝑖 +  𝛾𝛾𝑖𝑖 − 2𝛼𝛼𝑖𝑖𝛾𝛾𝑖𝑖)𝑁𝑁

𝑖𝑖=1 .     (4.7)  
                                        
Let us look for solution ψ of equation (4.6) as follows 
[32]: 
 

𝜓𝜓 = 𝜑𝜑(𝜉𝜉)𝑦𝑦(𝜉𝜉),  𝜑𝜑(𝜉𝜉) = 𝑒𝑒∫
𝜋𝜋(𝜉𝜉)
𝜎𝜎(𝜉𝜉)𝑑𝑑𝑑𝑑 .    (4.8)  

                                   
Here, 𝜋𝜋(𝜉𝜉) is an arbitrary polynomial of at most first 
degree and  𝜎𝜎 ≡ 𝜎𝜎(𝜉𝜉). Then, by performing simple 
straightforward computations, one obtains the 
following second-order differential equation for 𝑦𝑦 ≡
𝑦𝑦(𝜉𝜉): 

                  𝑦𝑦′′ + 𝜏𝜏�
𝜎𝜎
𝑦𝑦′ +  𝜎𝜎�

𝜎𝜎2
𝑦𝑦 = 0,          (4.9)                                                   

with   
             𝜏𝜏̅ = 𝜏̃𝜏 + 2𝜋𝜋,  𝜎𝜎� = 𝜎𝜎� + 𝜋𝜋2 + 𝜎𝜎𝜎𝜎′. 
 
It is seen that 𝜏𝜏̅(𝜉𝜉) and   𝜎𝜎�(𝜉𝜉)  are polynomials, 
respectively, not higher than the first and second 
degrees. We now choose a polynomial 𝜋𝜋(𝜉𝜉) from the 
condition that the polynomial  𝜎𝜎�(𝜉𝜉) be divided without 
remainder by  𝜎𝜎(𝜉𝜉), i.e. 
 

              𝜎𝜎� = 𝜆𝜆𝜆𝜆, 𝜆𝜆 = const.                (4.10)  
                                          
Now, equation (4.9) takes the form 
 

                    𝜎𝜎𝑦𝑦′′ + 𝜏𝜏̅𝑦𝑦′ + 𝜆𝜆𝜆𝜆 = 0.       (4.11) 
                           

Condition (4.10) gives a quadratic equation for the 
definition of a polynomial  𝜋𝜋(𝜉𝜉)  and a constant  𝜆𝜆: 
 

𝜋𝜋2 − (𝜎𝜎′ − 𝜏̃𝜏)𝜋𝜋 − 𝜇𝜇𝜇𝜇 + 𝜎𝜎� = 0, 
𝜇𝜇 = 𝜆𝜆 − 𝜋𝜋′.                 (4.12) 

 
From here, we find 
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𝜋𝜋 = 𝜎𝜎′−𝜏𝜏�
2

+ 𝑒𝑒��𝜎𝜎′−𝜏𝜏�
2
�
2

+ 𝜇𝜇𝜇𝜇 − 𝜎𝜎�  ,   𝑒𝑒 = ±1.                           
(4.13) 

 
In our case  𝜎𝜎′ − 𝜏̃𝜏 = 0  and we have  𝜋𝜋 =  𝑒𝑒�𝜇𝜇𝜇𝜇 − 𝜎𝜎�  
or 𝜋𝜋 =  𝑒𝑒�𝜇𝜇 − 𝑐𝑐0 + (𝜇𝜇 + 𝑐𝑐2)𝜉𝜉2.   Since  𝜋𝜋(𝜉𝜉) is a 
polynomial, the discriminant of a polynomial of the 
second degree standing under the root (4.13) D must be 
equal to zero. The equation D = 0 allows us to find a 
constant μ. After determination μ, we find  𝜋𝜋(𝜉𝜉) by 
equation (4.12), then  𝜑𝜑(𝜉𝜉),  𝜏𝜏̅(𝜉𝜉)  and  𝜆𝜆  with the help 
of (4.8), (4.9) and (4.12). In our case there are two 
possibility:  
 
1)    𝜇𝜇 = 𝑐𝑐0 , 𝜋𝜋 = 𝑒𝑒 𝑞𝑞1𝜉𝜉,  𝑞𝑞1 = �(𝑐𝑐0 + 𝑐𝑐2),  
2)    𝜇𝜇 = −𝑐𝑐2,  𝜋𝜋 = 𝑒𝑒𝑞𝑞2,  𝑞𝑞2 = �−(𝑐𝑐0 + 𝑐𝑐2),  

   (4.14)  
 

Where        𝑐𝑐0 + 𝑐𝑐2 = 𝑎𝑎4𝑚𝑚0
2𝜔𝜔2

ћ2
− 𝑄𝑄

𝑁𝑁
, 

  𝑄𝑄 = 𝐵𝐵 + 𝐴𝐴2 = 2∑ (𝛼𝛼𝑖𝑖 +  𝛾𝛾𝑖𝑖 − 𝛼𝛼𝑖𝑖𝛾𝛾𝑖𝑖)𝑁𝑁
𝑖𝑖=1 .  

 
We will restrict ourselves to the case when 𝑐𝑐0 + 𝑐𝑐2 >
0. In this case, the physical meaning has the first 

expression for the polynomial𝜋𝜋(𝜉𝜉). Moreover, for 
𝜑𝜑(𝜉𝜉) we obtain the following expression: 𝜑𝜑(𝜉𝜉) =
(1 + 𝜉𝜉2)

𝑒𝑒𝑞𝑞1
2 . From the requirement of finiteness 𝜑𝜑(𝜉𝜉) 

at points   𝜉𝜉 = ±∞,  i.e. from the condition  
lim
𝜉𝜉→±∞

𝜑𝜑(𝜉𝜉) = 0  (square integrability condition), we get  

𝑒𝑒𝑞𝑞1 < 0. This means that 𝑒𝑒 = −1 and, 𝜋𝜋 = −𝑞𝑞1𝜉𝜉. 
Thus, we get: 
 

               𝜑𝜑(𝜉𝜉) = (1 + 𝜉𝜉2)−
𝑞𝑞1
2    

 

 𝑞𝑞1 = �𝑎𝑎4𝑚𝑚02𝜔𝜔2

ћ2
− 𝑎𝑎

𝑁𝑁
= �𝜆𝜆04𝑎𝑎4 −

𝑎𝑎
𝑁𝑁

.       (4.15)    

                              
Now, taking into account that  𝜏𝜏̅ = 2(1 − 𝑞𝑞1)𝜉𝜉  and  
𝜆𝜆 = 𝜇𝜇 + 𝜋𝜋′ = 𝑐𝑐0 − 𝑞𝑞1, one can rewrite the equation 
(4.11) in the form 
 
 (1 + 𝜉𝜉2)𝑦𝑦′′ + 2(1 − 𝑞𝑞1)𝜉𝜉𝑦𝑦′ + (𝑐𝑐0 − 𝑞𝑞1)𝑦𝑦 = 0.                              

(4.16)  
 
             

Comparison (4.16) with the second order differential 
equation for the pseudo Jacobi polynomials 𝑦𝑦� ≡
𝑃𝑃𝑛𝑛(𝜉𝜉;  𝜈𝜈, 𝑁𝑁�): 

      
 

(1 + 𝜉𝜉2)𝑦𝑦�´´ + 2(𝜈𝜈 − 𝑁𝑁�𝜉𝜉)𝑦𝑦�´ + 𝑛𝑛(2𝑁𝑁� − 𝑛𝑛 + 1)𝑦𝑦� = 0, 𝑛𝑛 = 0,1,2,3 … ,𝑁𝑁�         (4.17) 
 
gives us the relations                                                       
                                                          𝜈𝜈 = 0,  𝑞𝑞1 = 𝑁𝑁� + 1,  
 

                    𝑐𝑐0 − 𝑞𝑞1 = 𝑛𝑛(2𝑁𝑁� + 1 − 𝑛𝑛), 𝑁𝑁� = 0,1,2,3, …                          (4.18) 
 

These relations lead to quantization of arbitrary parameter  𝑎𝑎 being of position dimensions and introduced in the 
framework of definition of the position-dependent mass  𝑀𝑀(𝑥𝑥)  (4.1): 
 

                              𝑎𝑎 ≡ 𝑎𝑎𝑁𝑁 = �(𝑁𝑁� + 1)2 + 𝑄𝑄
𝑁𝑁
�
1/4

.                                                (4.19) 
 
Therefore, position-dependent effective mass M (x) is quantizing as follows:    

                                            

                                   𝑀𝑀(𝑥𝑥) ≡ 𝑀𝑀𝑁𝑁(𝑥𝑥) =
�(𝑁𝑁�+1)2+𝑄𝑄𝑁𝑁

�(𝑁𝑁�+1)2+𝑄𝑄𝑁𝑁+𝜆𝜆0
2𝑥𝑥2

𝑚𝑚0.                                   (4.20)  

                                                  

Taking this hidden feature of position-dependent effective mass M (x), one obtains the following exact expressions 
for the energy spectrum    
            

                                𝐸𝐸 ≡ 𝐸𝐸𝑛𝑛 = ћ2

2𝑚𝑚0𝑎𝑎2
[𝑛𝑛(2𝑁𝑁� + 1 − 𝑛𝑛) + 𝑁𝑁� + 1 + 𝑄𝑄/𝑁𝑁]                             (4.21a)                                  

 
or 
 

                      𝐸𝐸𝑛𝑛 = 1
2
ћ𝜔𝜔 𝑛𝑛(2𝑁𝑁�+1−𝑛𝑛)+𝑁𝑁�+1+𝑄𝑄/𝑁𝑁

�(𝑁𝑁�+1)2+𝑄𝑄/𝑁𝑁
 ,    𝑛𝑛 = 0,1,2,3 … ,𝑁𝑁.                           (4.21b) 

 
Thus, exact polynomial of equation (4.16) are expressed by the pseudo Jacobi polynomials, i. e.  
                               

                                  𝑦𝑦(𝜉𝜉) ≡ 𝑦𝑦𝑛𝑛(𝜉𝜉) ≡ 𝑃𝑃𝑛𝑛(𝜉𝜉; 𝜈𝜈,𝑁𝑁�).                                           (4.22) 
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Now, taking into account (4.8), (4.15) and (4.22) one obtains the following expression for the wave functions of 
our model 

𝜓𝜓(𝜉𝜉) ≡ 𝜓𝜓𝑁𝑁𝑁𝑁(𝜉𝜉) = 𝐶𝐶𝑁𝑁𝑁𝑁(1 + 𝜉𝜉2)−
𝑞𝑞1
2 𝑃𝑃𝑛𝑛(𝜉𝜉; 0,𝑁𝑁�).                       (4.23) 

 
Let's express them through the variable 𝑥𝑥: 

𝜓𝜓𝑁𝑁𝑁𝑁(𝑥𝑥) = 𝐶𝐶𝑁𝑁𝑁𝑁 �1 + 𝜆𝜆02𝑥𝑥2

�(𝑁𝑁�+1)2+𝑄𝑄 𝑁𝑁�
�

−𝑁𝑁
�+1
2

𝑃𝑃𝑛𝑛 �
𝜆𝜆0𝑥𝑥

�(𝑁𝑁�+1)2+𝑄𝑄 𝑁𝑁�
4

; 0,𝑁𝑁��                  (4.24) 

 
Normalizing constants (𝑛𝑛 = 0,1,2,3 … ,𝑁𝑁) 
 

   𝐶𝐶𝑁𝑁𝑁𝑁 = 2𝑁𝑁�−𝑛𝑛� 𝜆𝜆0
𝜋𝜋𝜋𝜋!

�(𝑁𝑁� + 1)2 + 𝑄𝑄
𝑁𝑁� �

−18 Γ(𝑁𝑁�+1−𝑛𝑛)
Γ(2𝑁𝑁�+1−2𝑛𝑛)

�Γ(2𝑁𝑁�+2−𝑛𝑛)
2𝑁𝑁�+1−2𝑛𝑛

                    (4.25) 

 
we find from the condition that the wave functions (4.24) are orthonormal  
 

∫ 𝜓𝜓𝑁𝑁𝑁𝑁
∗ (𝑥𝑥)𝜓𝜓𝑁𝑁𝑁𝑁(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑛𝑛𝑛𝑛 .∞

−∞                                            (4.26) 
 
 

In calculating the integral in (4.26), we used the orthogonality condition for the pseudo Jacobi polynomials [31] 
 
 

∫ (1 + 𝑥𝑥)−𝑁𝑁−1𝑒𝑒2𝜈𝜈arctg𝑥𝑥𝑃𝑃𝑛𝑛(𝑥𝑥; 𝜈𝜈,𝑁𝑁)𝑃𝑃𝑚𝑚(𝑥𝑥; 𝜈𝜈,𝑁𝑁)𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑛𝑛2𝛿𝛿𝑛𝑛𝑛𝑛,∞
−∞               (4.27) 

 
where 𝑑𝑑𝑛𝑛2- is the square of the norm of the pseudo Jacobi polynomials and is equal to 
 
 

𝑑𝑑𝑛𝑛2 = 𝜋𝜋𝑛𝑛! 22𝑛𝑛−2𝑁𝑁 Γ(2𝑁𝑁+1−2𝑛𝑛)Γ(2𝑁𝑁+2−2𝑛𝑛)
Γ(2𝑁𝑁+2−𝑛𝑛)|Γ(𝑁𝑁+1−𝑛𝑛+𝑖𝑖𝑖𝑖)|2

 .                                  (4.28) 

 
In conclusion of this section, we also present the form of the wave functions, explicitly indicating the dependences 
on the parameter 𝑎𝑎 (4.19) of the model 
 

            𝜓𝜓𝑁𝑁𝑁𝑁(𝑥𝑥) = 𝐶𝐶𝑁𝑁𝑁𝑁 �1 + 𝑥𝑥2

𝑎𝑎2
�
−12�𝜆𝜆0

4𝑎𝑎4−𝑄𝑄 𝑁𝑁�
𝑃𝑃𝑛𝑛 �

𝑥𝑥
𝑎𝑎

; 0,�𝜆𝜆04𝑎𝑎4 −
𝑄𝑄
𝑁𝑁� − 1�.                  (4.29) 

 
 
5. CONCLUSION 
 
      In this paper, we have constructed an exactly 
solvable linear harmonic oscillator model with the 
position-dependent mass. The main point of this article 
is the proposal of a new and the most general 
Hamiltonian for the quantum dynamical systems with 

the position-dependent mass. This Hamiltonian 
contains, in the form of special cases, the Hamiltonians 
used in the literature. One feature of the psevdo Jacobi 
oscillator is that the number of its energy levels is finite. 
This is due to the fact that the depth of the pseudo-
parabolic oscillatory well 𝑉𝑉0 > 0 is finite. This depth is  

 
 

  lim
𝑥𝑥→±∞

𝑉𝑉(𝑥𝑥) = lim
𝑥𝑥→±∞

𝑀𝑀(𝑥𝑥)𝜔𝜔2𝑥𝑥2

2
= 1

2
ћ𝜔𝜔�(𝑁𝑁� + 1)2 + 𝑄𝑄/𝑁𝑁 ≡ 𝑉𝑉0.                 (5.1) 

 
 
The second feature is relating to the fact that the energy levels are not equidistant. The minimum and maximum 
energy values are respectively 
 
 

               𝐸𝐸𝑁𝑁0 = ћ𝜔𝜔
2

(𝑁𝑁�+1)2+𝑄𝑄/𝑁𝑁
�(𝑁𝑁�+1)2+𝑄𝑄/𝑁𝑁

  and  𝐸𝐸𝑁𝑁𝑁𝑁� = ћ𝜔𝜔
2

𝑁𝑁�(𝑁𝑁�+2)+1+𝑄𝑄/𝑁𝑁
�(𝑁𝑁�+1)2+𝑄𝑄/𝑁𝑁

.                            (5.2)  
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The wave functions of the constructed model of the 
oscillator are expressed in terms of pseudo Jacobi 
polynomials. In the limit 𝑎𝑎 → ∞, all quantities 
(equation of motion, wave functions, energy spectrum) 
of this model transform into the corresponding 
quantities of an ordinary linear harmonic oscillator with 
constant mass. For example, for energy levels (4.21) 
and wave functions (4.24) we have the following limit 
expressions 
                                         

 lim
𝑎𝑎→∞

𝐸𝐸𝑛𝑛 = ћ𝜔𝜔(𝑛𝑛 + 1/2),            (5.3)                           
                                                     

lim
𝑎𝑎→∞

𝜓𝜓𝑁𝑁𝑁𝑁(𝑥𝑥) = � 𝜆𝜆0
2𝑛𝑛𝑛𝑛!√𝜋𝜋

𝐻𝐻𝑛𝑛(𝜆𝜆0𝑥𝑥)𝑒𝑒−
1
2𝜆𝜆0

2𝑥𝑥2. (5.4) 

                                
It is clear from formula (5.4) that there is a limit relation 
between the pseudo Jacobi and Hermite polynomials 
with a shifted argument. We will prove in the next 
paper that it has the form 

 

lim
𝑁𝑁→∞

𝑁𝑁
𝑛𝑛
2𝑃𝑃𝑛𝑛 �

𝑥𝑥
√𝑁𝑁

;  𝜈𝜈√𝑁𝑁,𝑁𝑁� = 1
2𝑛𝑛
𝐻𝐻𝑛𝑛(𝑥𝑥 − 𝜈𝜈).   (5.5) 

                               
Let us make one more remark about the properties of 
the pseudo Jacobi oscillator, connected with the form 
of the generalized free Hamiltonian (3.6) (or (3.9)). In 
obtaining solutions (4.21) and (4.24), we assumed that 
the following inequality holds: 
 

                  𝑎𝑎
4𝑚𝑚02𝜔𝜔2

ћ2
− 𝑄𝑄

𝑁𝑁
> 0,                  (5.6)   

                                        
where  𝑄𝑄 = 2∑ (𝛼𝛼𝑖𝑖 +  𝛾𝛾𝑖𝑖 − 𝛼𝛼𝑖𝑖𝛾𝛾𝑖𝑖)𝑁𝑁

𝑖𝑖=1 . However, for 
certain values of the parameters 𝛼𝛼𝑖𝑖 , 𝛾𝛾𝑖𝑖  (𝑖𝑖 =
0,1,2,3 … ,𝑁𝑁  this inequality may not hold, i.e., the 
pseudo Jacobi oscillator for certain energy values may 
not have a discrete spectrum ... 

                                                         __________________________ 
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The mechanism of the formation of excess conductivity in cuprate HTSCs YBa2Cu3O7-δ and  Y0,5Cd0,5Ba2Cu3O7-δ was 

considered in the framework of the model of local pairs, taking into account the Aslamazov - Larkin theory near Тс
mf . The 

temperature Tcr of the transition from the 2D fluctuation region to the 3D region (the temperature of the 2D-3D crossover) is 
determined. The values of the coherence length of fluctuation Cooper pairs ξc (0) along the с axis are calculated. It is shown 

that partial substitution of Y for Cd in the Y-Ba-Cu-O system leads to an increase in ξc(0) by ~ 3.2 times (from 1.1 Ǻ to 3.6 

Ǻ), as well as to an expansion as a region of existence pseudogap, and the region of superconducting (SC) fluctuations near 

Тс
mf. The temperature dependence of the pseudogap Δ*(T) and the values of Δ* (Тс

mf) were determined, and the temperatures 
Tm (122.7K) corresponding to the maximum of the temperature dependence of the pseudogap in Y0,5Cd0,5Ba2Cu3O7-δ were 

estimated. The maximum values of the pseudogap in the Y0,5Cd0,5Ba2Cu3O7-δ sample are 660K. 

 

PACS: 74.25. Fy, 74.20.Mn, 74.72. ± h, 74.25. ± q, 74.25.Jb 

Keywords: superconductivity, pseudogap (PG), fluctuation conductivity, coherence length, Y0,5Cd0,5Ba2Cu3O7-δ. 

 

INTRODUCTION 
     

The anomalous properties of layered metal oxide 

high-temperature superconductors (HTSC) are one of 

the most important problems in modern solid-state 

physics [1]. In experiments on the charge transfer 

dynamics in such systems, a number of objective 

difficulties arise, including the rather complex crystal 

structure of HTSCs [2, 3], the nonuniform distribution 

of structural defects [4], the presence of intergrain 

boundaries and cluster inclusions [5], and the 

inhomogeneity of specific experimental samples [6], 

which is often caused by different technological 

prehistories, etc.  
The physical properties of HTSCs are also 

unusual, especially in the normal state, where a 

pseudogap (PG) opens along the excitation spectrum 

at the characteristic temperature T* >> Tc [7, 8] (Tc is 

the critical temperature of the superconducting (SC) 

transition).  

It is believed that the correct understanding PG 

physics, which remains one of the most intriguing 

properties of cuprates [9], will shed light on the SC 

pairing mechanism in HTSCs.  

Since the discovery of HTSCs with active plane 

CuO2 (cuprates), attempts have been made to improve 

their superconducting characteristics by isomorphic 

substitutions of one of the components [11, 12]. 

 One of the most interesting materials for 

studying the properties of HTSCs is the YBa2Cu3O7-δ 

(YBCO) compound, because it is possible to widely 
vary its composition by replacing yttrium with its 

isoelectronic analogues, or by changing the degree of 

oxygen non-stoichiometry. In YBCO, yttrium is 

replaced by a majority of lanthanides and other 

elements [1, 12-14], which usually does not lead to the 

deterioration of the compound’s superconducting 

properties. Pr is an exception, since PrBCO is an 

insulator [15]. 

It is wellknown that ions of rare earth elements 

and K replace yttrium atoms. Accordingly, Sr is 

incorporated into the positions of Ba atoms, while 

other dopants are incorporated into the Cu(1) position 

[16]. However, this process is not well understood. 

The mechanisms of how a modification impacts the 

properties of HTSCs in underdoped and overdoped 

regimes remain unclear, which is important since 

fulfilling the conditions of these regimes is necessary 

to achieving the optimal properties of HTSC 

materials. The effect of substitution on fluctuation 

processes and the PG is, likewise, poorly understood. 

Therefore, the study of substitution in the classical 

structure of YBa2Cu3O7-δ provides new data on the 
mechanism of superconductivity and the contribution 

made to superconductivity by Y, Ba, and Cu atoms. 

HTSC materials are synthesized with partial 

substitution of Cd for Y in YBa2Cu3Ox, because 

despite the fact that yttrium and cadmium are 

heterovalent, their ionic radii are similar (0.90 and 

0.95 Å, respectively). This serves as the basis for such 

a substitution in YBaCuO. 

The goal of this study is to investigate how 

possible defects and structural changes impact the 

physical parameters, fluctuation characteristics, and 

PG after substituting Cd YBa2Cu3O7-δ.  A sample (Y1) 

YBa2Cu3O7-δ and (Y2)  Y0,5Cd0,5Ba2Cu3O7-δ were 

studied. In this case, the resistivity ρ (T) of the Y2 

sample in the normal phase at 300 K in comparison 

with Y1 increases by almost 13 times.  

The fluctuation conductivity (FLC) is analyzed 
within the framework of the Aslamazov–Larkin (AL) 

and Hikami–Larkin (CL) theories [17, 18]. Near Tc, 

the FLC of all samples, σ(T), is perfectly described 

by the threedimensional (3D) equation of the AL 

theory, which is typical for HTSCs [1, 15].  To 

analyze the temperature dependence of the pseudogap, 

the model of local pairs proposed in [19] was used. 
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EXPERIMENTAL RESULTS AND THEIR 

PROCESSING 
 

The Y0,5Cd0,5Ba2Cu3O7-δ  samples are prepared in 

two stages [12]. At the first step, the initial 

components, which are in a stoichiometric  ratio, are 

mixed and annealed in air at a temperature of 1120 K 

for 25 h. At the second step, the resulting 

compositions are annealed in oxygen (P = 1.2–1.5 

atm) at a temperature of 1190 K for 25 h, and slowly 

cooled to room temperature. In this work, we analyze 

the results of replacing Y with Cd at x = 0.5. 
 

 
 

 
 
Fig. 1. Temperature dependences of the resistivity of the 

samples YBa2Cu3O7-δ (a) and Y0,5Cd0,5Ba2Cu3O7-δ 

(b). Straight lines denote ρn (T) extrapolated to low 

temperatures.  
 

Samples 8×4×3 mm in size are cut from 

compressed tablets (12 mm diameter and 3 mm 
thickness) of synthesized polycrystalline material. The 

electrical resistance is measured according to the 

standard four-probe method. The current contacts are 

created by applying a silver paste and subsequently 

connecting silver conductors with 0.05 mm diameters 

to the ends of the polycrystalline sample, in order to 

ensure the current spreads across it in a uniform 

manner. The potential contacts located at the middle 

of the sample’s surface are created in a similar way. 

Then, a three-hour annealing process is carried out at a 

temperature of 200 °C in an oxygen atmosphere. This 

procedure makes it possible to obtain a contact 

transition resistance of 1 Ω and to perform resistive 

measurements at transport currents of up to 10 mA in 

the ab-plane. 

The temperature dependences of the resistivity ρ 

(Т) = ρab (Т) of the synthesized polycrystals Y1 and 

Y2 are shown in Fig. 1. The ρ(T) dependences at 

different values of   have a shape characteristic of 

optimally doped HTSCs [20]. One exception is the 

nonlinear dependence ρ(Т) at Y1, ρ(Т) ~ Т2, which is 

typical for overdoped cuprates [20]. Analysis shows 

that the data in this case are well approximated by the 

equation ρ(T) = ρ0 + В1(Т) + В2 (Т)2 with the 

parameters ρ0 = 9.07, B1 = 0.1442, and B2 = 

0.0000957, obtained by approximating data using the 

Origin computer program. The coefficient of the 

quadratic term is very small, but nonzero. Thus, we 

have an overdoped sample. This result is particularly 

interesting, since it is impossible to obtain an 
overdoped sample of YBa2Cu3O7-δ simply by oxygen 

intercalation. The maximum that can be obtained is δ 

= 0 and an oxygen index 7– δ = 7, at Тc ~ 92 K [20]. It 

is most likely that such a dependence ρ(T) is specific 

to this polycrystalline sample.  

As seen in Fig. 1, the critical temperatures of the 

samples of the Y – Ba – Cu – O system upon doping 

with Cd in the considered case remain up to ~ 85 K. In 

this case, the resistivity ρ (Т) of the Y2 samples in the 

normal phase at 300 K in comparison with 

YBa2Cu3O7-δ increases by almost 13 times.  

To determine the temperature of the beginning of the 

formation of local pairs [3,4] in the samples (T *), the 

criterion [ρ (T) –ρ0] / aT = 1 was used, which reflects 

the transformation of the equation of a straight line 

[39], where ρ0 is the residual resistance cut off by this 

line on the Y axis at T=0. In this case, it is defined as 
the temperature of deviation of ρ (T) from 1.  

 

FLUCTUATION CONDUCTIVITY 
 

The linear course of the temperature dependence 

of the specific resistance of samples Y1 and Y2 in the 

normal phase is well extrapolated by the expressions 

n(Т) = (D  and  n(Т) 
) 

(here D, B and k are some constants). This linear 

relationship, extrapolated to the low temperature 

range, was used to determine excess conductivity 

 according to:  
  

       (1) 
 

The analysis of the behavior of excess 

conductivities was carried out in the framework of the 

local pair model [4]. 

Assuming the possibility of the formation of 
local pairs [(3), 4] in the Y2 sample at temperatures 

below Т * = 136.6 K, the experimental results 

obtained near Тсmf were analyzed taking into account 

the occurrence of fluctuation Cooper pairs (PCPs) 

above Тс within the framework of the Aslamazov - 

Larkin theory  ( AL) [17] (fiq.2). 

The Fig. 2 shows dependence of  the logarithm 

of the excess conductivity of the samples Y1 (1) and 

Y2 (2) on the logarithm of the reduced temperature      

ε = (T / Tc
mf-1). According to the theory of AL, as 
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well as Hikami – Larkin (HL) developed for HTSC 

[18], in the region of ТТc (but near Тc
mf), the  

fluctuation coupling of charge carriers occurs, leading 

to the appearance of fluctuation conductivity (FC). In 

this region, the temperature dependence of excess 

conductivity on temperature is described by the 

expressions: 

 

σАЛ3D = C3D {e2/[32ħξс(0)]}-1/2,        (2) 

σАЛ2D = C2D {e2/[16ħd]}-1,             (3) 
 

respectively for three-dimensional (3D) and two-

dimensional (2D) region. The scaling coefficients C 

are used to combine the theory with experiment [4]. 

 

 
 

Fig.2. Temperature dependence of the inverse square of the  

           excess conductivity  of the  

           Y0,5Cd0,5Ba2Cu3O7-δ  polycrystal.  

 

 
 

Fig. 3. Dependences of the excess conductivity logarithm on 

ln (T / Tc
mf -1) for samples Y1  and Y2. Solid lines - 

calculation within the framework of the Aslamazov-

Larkin theory.  

 

Thus, by the angle of inclination α of 

dependences ln (σ) as a function of ε = ln (T / Tc
mf-1) 

(see Fig. 3), we can distinguish  2D (tg = -1) and 3D 

(tg = - 1/2) regions of phase transition. It  can also 

determine the crossover temperature T0 (the transition 

temperature from σ2D to σ3D) and the tangents of the 

slopes of the dependences )  corresponding to the 

exponents ε in equations (2) and (3). The 
corresponding values of the parameters 2D and 3D 

regions determined from the experiment for sample 

Y1 are 2D (tg = -1.04) and 3D (tg = -0.5) and for 

Y2 2D (tg = -1) and 3D (tg = -0.5). 

       On basis of  value  the temperature of the 

crossover T0, which corresponds to lnε0, according to 

Fig. 3, it can determine the coherence length of local 

pairs along the c axis [18,19]: 

 

ξс(0) = d√ε 0 ,                      (4) 

 

here d ≈ 11.7Ǻ is the distance between the inner 

conducting planes in Y-Ba-Cu-O [20]. The values of  

ξc (0) = 1.1 Ǻ (lnε0 ≈ -1.2318) for Y1 and ξc (0) = 3.6 
(lnε0 ≈ -2.347) for Y2 was obtained, accordingly. 

 

ANALYSIS OF THE MAGNITUDE AND 

TEMPERATURE DEPENDENCE OF THE 

PSEUDOGAP 

 

As noted above, in the cuprates at ТТ *, the 

density of electron states of quasiparticles on the 

Fermi level decreases [21] (the cause of this 

phenomenon is not yet fully elucidated), which creates 

conditions for the formation of a pseudogap in the 

excitation spectrum and it leads ultimately to the 

formation of an excess conductivity. The magnitude 

and temperature dependence of the pseudogap in the 

investigated samples  was analyzed using the local 

pair model, taking into account the transition from 

Bose-Einstein condensation (SCB) to the BCS mode 

predicted by the theory [18] for HTSC when the 

temperature decreases in the interval T * <T <Tc. Note 
that excess conductivity exists precisely in this 

temperature range, where fermions supposedly form 

pairs - the so-called strongly coupled bosons (PRS). 

The pseudogap is characterized by a certain value of 

the binding energy εb~1/ξ2(T), causing the creation of 

such pairs [18], which decreases with temperature, 

because the coherence length of the Cooper pairs 

ξ(T)=ξ(0)(Т/Тс-1)-1/2, on the contrary, increases with 

decreasing temperatures. Therefore, according to the 

LP model, the SCB  are transformed into the FCP  

when the temperature approaches Tc (BEC-BCS 

transition), which becomes possible due to the 

extremely small coherence length ξ (T) in cuprates. 

From our studies, we can estimate the magnitude 

and temperature dependence of  PG, based on the 

temperature dependence of excess conductivity in the 

entire temperature range from T * to Tc
mf according to 

[21]: 

 


















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)/2(2)0(16

)]/)[exp(/1(
)(

0
**

0

2**




sh

eTTTA

c
   

(5)    

 

where  the  (1-T / T *) determines the number of pairs 

formed at T ≤ T *: and the exp (-Δ */T) determines the 
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number of pairs destroyed by thermal fluctuations 

below the BEC-BCS transition temperature. The 

coefficient A has the same meaning as the coefficients 

C3D and C2D in (2 ) and (3). 

The solution of equation (5) gives the value of  *: 




















)/2(2)0(16)(

)/1(
ln)(

0
**

0

2*
*

 shT

eTTA
TT

c
                               

(6) 

 

where Δσ (T) is the experimentally determined excess 

conductivity. 

 

 
 
Fig.4. Temperature dependences of the calculated 

pseudogap for the sample Y2. The arrows show 

the maximum values of the pseudogap value.  

 

The temperature dependence and the value of the 

pseudogap parameter  * (T) (Fig. 4) were calculated 

based on equation (6). with the parameters given 

above. Note that no PG is observed in Y1, since the 

sample is in overdoped mode. As noted in [21], the 

value of the coefficient A is selected from the 

condition of coincidence of the temperature 

dependence of  equation (5), assuming 

)). with experimental data in the region of 

3D fluctuations near Tc. According to [21, 22], the 

optimal approximation for the HTSC material is 

achieved with values of  . For 

sample Y2, the cc5.  As a result, from 

the LP analysis for Y2, the values A=6.95 and   

(Тс
mf) = 87,1·2,5=217,7К,  were obtained, which is 

consistent with the experimental data. 

The temperature dependences of Т) obtained 

on the basis of equation (6) are in Fig. four.  The 

maximum values of the pseudogap for Y2 Δ * (Tm)  

660 K, Tm = 122,7K have been determined.  

From the presented data in Fig. 4, it is also seen 

that as T decreases, the pseudogap value first 

increases, then, after passing through a maximum, 

decreases.  

This decrease is due to the transformation of the SCB 

in the PCF as a result of the BEC-BCS transition, 

which accompanied by an increase in excess 

conductivity at   ТТс. Such a behavior of  ∆ * with 

decreasing temperature was first found on YBCO 

films [21,22] with different oxygen contents, which 

seems to be typical of cuprate HTSC [21]. Thus, we 

can come to the conclusion that in the 

Y0,5Cd0,5Ba2Cu3O7-δ investigated by us, the formation 

of local pairs of charge carriers at ТТс
mf is possible, 

which creates conditions for the formation of a 

pseudogap [21,22] with the subsequent establishment 

of the phase coherence of fluctuation Cooper vapor at 

T <Tc
mf.  

  

CONCLUSION 

 
The investigation of the effect of partial 

substitution of Y bu Cd on the mechanism of excess 

conductivity in Y-Ba-Cu-O polycrystals showed that 

partial substitution of Y by Cd leads to a decrease in 

the critical temperatures of the Y0,5 Cd0,5Ba2Cu3O7-δ 

(Y2) sample compared to YBa2Cu3O7-δ (Y1) 

(respectively Тс
mf(Y2)=87,1К и Тс

mf(Y1)=91,99К Tc). 

In this case, the resistivity of the Y0,5 Cd0,5Ba2Cu3O7-δ 

sample in the normal phase at 300 K increases (13 

times) as compared to YBa2Cu3O7-δ, and the increase 

in the coherence length of Cooper pairs is 3.27 times 

(1.1 and 3.6 Å, respectively ).  

Studies and analysis have shown that the excess 

conductivity Δσ (T) in Y0,5 Cd0,5Ba2Cu3O7-δ  in the 

temperature range Тс
mfТТ* is satisfactorily 

described in the framework of the model of local 

pairs.  
The result of the analysis of the pseudogap state 

by the excess conductivity method confirmed that the 

model of local pairs in this case is applicable for the  

Y0,5 Cd0,5Ba2Cu3O7-δ image.  
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The process of producing a neutralino pair in arbitrarily polarized lepton-antilepton (electron-positron or muon-

antimuon) collisions has been studied within the Minimal Supersymmetric Standard Model: 
00 ~~
ji    . We con-

sider s-channel diagrams with neutral Z-boson and Higgs-boson H  ( h  or A ) exchanges, and t-channel diagrams with sca-

lar 

L

~
 and 


R

~
-lepton exchanges. General expressions for the differential and integral cross sections of the process are ob-

tained, transverse and longitudinal spin asymmetries due to lepton-antilepton pair polarizations, and degrees of longitudinal 

and transverse neutralino polarization are determined. Angular and energy dependences of cross sections and polarization 
characteristics of the process are studied in detail. 

 

Keywords: Standard Model, Minimal Supersymmetric Standard Model, lepton-antilepton pair, neutralino, Higgs boson, 

effective cross section. 
PACS: 11.30.Pb, 14.80.Da, 14.70.Nb 

 
1. INTRODUCTION 

 

The discovery of a scalar Higgs boson with char-

acteristics corresponding to the Standard Model (SM) 

predictions was made at the Large Hadron Collider 

(LHC) by the ATLAS and CMS collaborations in 

2012. [1, 2] (see also reviews [3-5]). With its discov-

ery the missing brick in the CM building was found. 

The way to the discovery was long and the fact of the 

discovery itself meant the beginning of great work to 

verify the validity of the detected signal and clarify its 

nature, determining the properties of the new particle. 

Higgs boson SMH  is unstable particle and can 

decay through different channels. It was discovered at 

the LHC by studying decays to two photons (

SMH ), decays to two vector bosons 
*ZZ  

and 
*WW  (here 

*Z  and 
*W -virtual bosons). Neutral 

bosons Z  were identified by decay channels into two 

leptons: 
ee - or 

 -pair. This is written as 

4*
SM  ZZH , where   – one of the leptons is 

 ,e . The decays of the W -boson pair were identi-

fied by the channel  *
SM WWH , where 

  – is the electron or muon neutrino. 

Based on the decay of the Higgs boson into two 

photons SMH  its mass is found to be 

)(
SMHM 126.00.4 (stat.) 0.4 (syst.) GeV [1]. 

For the decay to four leptons )4(
SM

HM 126.80.2 

(stat.)0.7 (syst.) GeV [6]. For a complete picture it is 

useful to cite the results of the CSM experiment [2], 

which performed the discovery of a new particle sim-

ultaneously with the ATLAS collaboration: 

)(
SMHM 125.30.4 (stat.)0.5 (syst.) GeV. A 

mass value of )4(
SM

HM 125.60.4 (stat.)0.2 

(system.) GeV was found for the decay channel 

4*
SM  ZZH . Consequently, the results of the 

ATLAS and CSM collaborations match the mass of 

the Higgs boson. 
SM is a successful theory that describes all 

known elementary particles and strong, electromag-

netic, weak interactions between them (the gravita-

tional interaction so far is described by Einstein's gen-

eral theory of relativity). On the basis of SM one can 

make accurate calculations and compare them with the 

corresponding experimental data. The agreement be-

tween SM and experiment is strikingly good. 

However, SM has its shortcomings. For example, 

the key point of SM is the Higgs mechanism of elec-

trically weak symmetry, which successfully describes 

the generation of elementary particle masses. Unfortu-

nately, SM does not give any explanation why there is 

a Higgs field at all and why it has such property – to 

form a vacuum condensate. 

The second shortcoming of SM is connected 

with renormalization of the Higgs boson mass. The 
fact is that for all SM particles the mass renormaliza-

tion works well. However, in the case of the Higgs 

boson virtual particles have a strong influence on the 

mass by trillions of times. Inside SM there is no con-

straint stopping the Higgs boson mass growth at the 

expense of virtual particles. This drawback can be 

eliminated in the following way. If some other parti-

cles exist in nature, they in virtual form can compen-

sate their influence on Higgs boson mass. The most 

important thing here is that in the Minimal Super-

symmetric Standard Model (MSSM) such compensa-

tion arises by construction of the theory itself. It is 

such theories that most attract physicists. 

According to SM, neutrinos  ,e  and   are 

massless particles. However, experiments prove that 

neutrinos have mass, and in addition, they are very 

actively mixing with each other, passing from one 

kind to another. All this suggests that the mass and 

mixing of neutrinos is not due to the Higgs mecha-

nism, but to a phenomenon of some other nature. 
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Again, there are no such phenomena in SM, while 

there are plenty of such mechanisms in models outside 

of SM. 

The absence of dark matter particles in SM is 

one of the difficulties of this model. Astro-physicists 

believe that in the Universe, besides ordinary matter in 

the form of stars, black hole planets, gas-dust clouds, 

neutrinos, etc., there are also particles of a completely 

different nature. We do not see these particles, they 

are neutral and practically do not interact with ordi-

nary matter and radiation. In the SM there is not a 

single particle suitable for this role. However, in the 

MSSM there are such particles as neutralino, snei-

trino, gluino, gravitino, which may be candidates for 

dark matter. 

The above facts and a number of other reasons 

indicate the need to go beyond SM. In this case, the 
main attention is paid to the MSSM [7-10]. In this 

model, in contrast to SM, two scalar field doublets 

with hypercharges –1 and +1 are introduced: 
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To obtain the physical fields of Higgs bosons and 

determine their masses, the scalar fields 1  and 2  

decompose into real and imaginary parts around the 

vacuum 
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where 11
2

1
  and 22

2

1
  are the 

vacuum values of the Higgs boson fields. Mixing the 

fields 
0
1H  and 

0
2H  obtain the CP-even H  and h  

Higgs bosons (mixing angle  ): 
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Similarly mix the fields 
0

1P  and 
0

2P  (

1H  and 


2H ) and obtain a Goldston 

0G -boson and CP odd 

Higgs boson A  (charged Goldston 
G - and Higgs 

bosons 
H ) (mixing angle  ): 
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Thus, there are five Higgs bosons in the MSSM: 

the CP-even H  and h -bosons, the CP-odd A -

boson, and the charged 
H - and 

H -bosons. The 

Higgs sector is characterized by the mass parameters 

,HM  hM , AM , H
M  and the mixing angles of the 

scalar fields   and   . Of these, only two parameters 

are considered to be free: the mass AM  and the angle 

12tg  . The other parameters are expressed 

through them: 

  

]2cos4)([
2

1 222222222
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where WM  and ZM  – are the masses of gauge 
W - 

and Z -bosons. 

The supersymmetric (SUSY) partners of gauge 

W - and Higgs 
H -bosons are calibrino 

W
~

 and 

higgsino 
H

~
. These spinor fields mix and new 

chargino 
 2,1

~  states appear. The neutral counterparts 

of charginos are called neutralinos and there are four 

of them 
0~
j  ( 43,2,1j ). They arise as a result of 

mixing binos 
0~

B , vino 
0

3

~
W  and higgsinos 

0
1

~
H , 

0
2

~
H . The mass matrix of the neutralino is non-

diagonal and depends on the mass parameters wine 

2M , higgsino   and wine 1M , as well as on the 

parameter tg  [7, 8, 11-13]: 
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This matrix can be diagonalized by one real ma-

trix Z . Expressions of the matrix elements of this 

matrix ijZ  ( 43,2,1, ji ) and the neutralino mass 

are given in [11, 13]. For large values of the parameter 

ZMM  2,1 , the masses of the neutralino 

are: 

  

W
Z M

M
Mm 






2
12

2

1 sin)2sin(0
1

, 

 
W

Z M
M

Mm 





2
22

2

2 cos)2sin(0
2

,  

 )cossin)(2sin1(
2

2
1

2
22

2

0
4/3

WW
Z MM

M
m 


 

 , 

  

W  – Weinberg angle, 



  – sign of the parame-

ter  . At   two neutralinos correspond to the 

calibrino state with masses 10
1

Mm 


 and 

20
2

Mm 


, and other neutralinos correspond to the 

higgsino state with masses 
 0

4
0
3

mm .  

Supersymmetric (SUSY) chargino and neutralino 

particles can be born in the LHC in cascade decays of 

squarks and gluinos: qqg ~~ , iqq  ~~ . Note that 

chargino or neutralino pairs can be born in high-

energy lepton-antilepton (electron-positron and muon-

antimuon) colliders: 
00 ~~,~~
jiji    .  

These processes in the case of nonpolarized ini-

tial and final particles are considered in [14, 15]. The 

production of SUSY particles with spin 0 or 1/2 in 

polarized electron-positron collisions has been studied 

in [16-18]. In previous papers [19, 20] we have con-

sidered the process of chargino pair production in ar-

bitrarily polarized lepton-antilepton interactions. Dia-

grams with photon and Z-boson exchange, with Higgs 

boson exchange H  ( h  or A ), and with scalar neu-

trino L
~  exchange have been studied in detail. It is 

found that in diagrams with photon and Z-boson ex-

change the lepton and antilepton must have opposite 

helicities (

LR  or 


RL ); in diagrams with Higgs 

boson exchange H  ( h  or A ) the lepton and antilep-

ton must have identical helicities (

LL  or 


RR ); 

the diagram with sneutrino L
~  exchange is character-

ized by the fact that the lepton and antilepton can have 

only the left helicity (

LL ).  

The purpose of the present paper is to study the 

process of neutralino pair production in arbitrarily 

polarized lepton-antilepton collisions 
 

00 ~~
ji    ,                        (1) 

 

here 
  – is the lepton-antilepton (electron-

positron and or muon-antimuon) pair, 
00~~
ji   – neu-

tralino pair. Within the MSSM framework and taking 

into account the arbitrary polarizations of the lepton-

antilepton pair, a general expression for the effective 

cross section of the process (1) is obtained. The longi-

tudinal and transverse spin asymmetries due to the 
lepton-antilepton pair polarizations and the degrees of 

longitudinal and transverse neutralino polarization 

were determined. In particular, it is shown that the 

longitudinal spin asymmetry arising from the annihila-

tion of longitudinally polarized leptons with nonpolar-

ized antileptons is equal in magnitude and opposite in 

sign to the asymmetry arising from the annihilation of 

longitudinally polarized antileptons with nonpolarized 

leptons. 
 

2. THE AMPLITUDE AND CROSS SECTION 

OF THE PROCESS 
00* ~~)( jiZ    

 

The annihilation of a lepton-antilepton pair into a 

neutralino pair is described by the Feynman diagrams 

in Fig. 1. Diagram a) s-channel diagram with Z-boson 

exchange, diagram b) also s-channel diagram with 

Higgs boson exchange H  ( h  or A ) (this diagram 

plays an important role in muon-antimuon annihila-

tion). Diagrams c) and d) are t-channel diagrams with 

an exchange of sleptons L
~

 and R
~

. 

 
 

 
 

Fig. 1. Feynman diagrams for the reaction 
00 ~~
ji  . 
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The Lagrangians of the Z-boson interactions with a lepton-antilepton pair and neutralino pair are written in 

the following form: 

 


 ZPgPg
ig

L RRLL
W

Z  )(
cos

,                                                     (2) 

 



 ZPgPg

ig
L jR

R

ZL
L

Zi
W

Z jijiji

0
~~~~

0
~~

~)(~
cos2

000000 ,                      (3) 

here 
W

e
g




sin
 – is the electroweak interaction constant, Lg  and Rg  ( L

L

Z
Gg

ji


 00~~  and R

R

Z
Gg

ji


 00~~ ) – 

are the left and right interaction constants of the lepton (neutralino) with the Z-boson: 

  

,sin,sin
2

1 22
WRWL gg                                            (4) 

 ],[
sin2

1
],[

sin2

1
44334433 jiji

W
Rjiji

W
L ZZZZGZZZZG 





                     (5) 

)1(
2

1
5, RLP  – kirality matrices. 

Diagram (a) of Fig. 1 corresponds the amplitude  
 

 


  )(),()(),(
cos2

11222

2
)( sDspuPgPgsp

g
M ZRRLL

W

Z
fi   

 )',()(),( 21 skPGPGsku jRRLLi   ,                                           (6) 

 

where )( 11 sp , )( 22 sp , )(1 sk  and )'(2 sk  – are the 

4-momentum (polarization vectors) of the lepton, anti-

lepton, and neutralino 
0~
i  and 

0~
j , 

12 )()(  ZZZZ MiMssD , 
2

21 )( pps   – is 

the square of the total energy of the lepton-antilepton 

pair, Z  – is the total width of the Z-boson. 

We find in the standard way for the modulus of 

the square of the amplitude (6): 

 


 L
sDg

M
W

ZZ
fi 4

24
2

)(

cos4

)(
,              (7) 

where the expressions for the lepton L  and neu-

tralino   tensors are given in the Appendix. 

In the case when the lepton-antilepton pair is po-

larized arbitrarily and summation is performed on the 

polarization neutralino states, the expression for the 

modulus of the amplitude square (6) is obtained: 
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 ))]})(())(())(())((( 1112121122212122 skpkskpkskpkskpkmgg LR   , (8) 
 

where m  – is the lepton mass. 

Using calculations based on (8), for arbitrary polarization of the colliding lepton-antilepton beams in the 

center-of-mass system, we have the following expression for the differential cross section reaction (1): 
 

 
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  ),()(]4)cos),()1)(1)(([( 21
22222

jiRLRLjiRLjijijiRL rrGGggrrGGrrrrrrGG  

 }cos),())](1)(1()1)(1([)2cos(sin 22
21

2
21

22  jiRLRL rrGGgg ,  (9)  

  

here 1  and 2  – are the helicities of the lepton and 

antilepton, 1  and 2  – are the transverse compo-

nents of the spin vectors of the lepton-antilepton pair, 

  – the angle of departure of the neutralino 
0~
j  with 

respect to the lepton momentum direction,   – the 

azimuthal angle of departure of the neutralino, and 

  the angle between the vectors 1η


 and 2η


, 

2
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






s

m
r

j

j , ),( ji rr  – is the kin-

ematic function of the two-particle phase volume: 
 

jijiji rrrrrr 4)1(),( 2  . 

  

Let us analyze the differential cross section (9) in 

various cases of lepton-antilepton pair polarization. It 

is well known that electrons and positrons moving in 

storage rings acquire predominantly transverse polari-

zation due to synchrotron radiation. In the case when 

the lepton-antilepton pair is polarized transversely, the 

differential cross section of the process (1) has the 

form: 

 

 )],(1[
)(),(

21

)(
021

)(










A

d

d

d

d
ZZ

.                                    (10) 

Here  
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 }cos),())((]4)cos),( 22222  jiRLRLjiRLji rrGGggrrGGrr                        (11) 

 

– is the differential cross section of the process averaged over the polarization states of the lepton-antilepton pair, 

a ),( A  – is the azimuthal angular (or transverse spin) asymmetry determined by the formula (the angle   is 

assumed  ): 
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12222 }cos),())((  jiRLRL rrGGgg .                                           (12) 

 

The differential cross section of the process 
00* ~~)( jiZ   in the case of nonpolarized particles 

(11) is not symmetric when the polar angle is replaced by  . Hence, the angular distribution neutralino 

possesses asymmetry. The forward-backward angular asymmetry is defined by formula 
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and has the following form 
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Now assume that the lepton-antilepton pair, as well as the neutralino 
0~
i  and 

0~
j  polarized longitudinally. 

In this case, let us represent the differential cross section of the process (1) as follows: 
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22  jiRLjiRLjiji rrhhGGrrhhGGrrrr         (15) 

 

where 1h  and 2h  – are the helicities of the neutralino 

0~
i  and 

0~
j . 

As can be seen from the cross section, the lepton 

and the antilepton must have opposite helicities at 

annihilation: 121  . If the antilepton is po-

larized right )(12
 R , the lepton must have a 

left-handed helicity )(11
 L  and vice versa, if 

the left-handed antilepton is annihilated (
 L;12

), the lepton must have a right-handed helicity: 

)(11
 R  (see Fig. 2, which shows the momen-

tum and spin vectors of the lepton-antilepton pair). 

This is a consequence of the conservation of total 

momentum in the transition Z   . Indeed, 

consider this process in the center-of-mass system of 

the lepton-antilepton pair. In this system, the momenta 

of the lepton and antilepton are equal in magnitude 

and opposite in direction. In Fig. 2a), the helicity of 

the lepton is 11  , and the helicity of the antilep-

ton is 12  . Hence, the projection of the total 

momentum of the lepton-antilepton pair in the direc-

tion of the antilepton momentum will be 1  (in units 

of  ); the spin of the Z -boson also equals 1 , so the 

total momentum is conserved in the transition 

Z   . 

 
 

 
 

 Fig. 2. Impulse and spin 
 -pair directions.  

 

As for the helicities of neutralinos 1h  and 2h , 

we note that, according to formula (15), they can be 

arbitrary independently of each other ( 11 h , 

12 h ). This is due to taking into account the mass-

es 0~
i

m


 and 0~
j

m


 neutralinos. Suppose that the energy 

of the counter lepton-antilepton beams is much larger 

than the masses of the neutralinos ( 0~
i

ms


 , 0~
j

m


), 

then we can neglect the mass terms of the neutralinos. 

As a result, for the cross section of the process (1) we 

have the expression: 
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According to this formula, the neutralinos 
0~
i  

and 
0~
j  must have opposite helicities 121  hh . 

At high energies, the process 
00 ~~
ji     

corresponds to four spiral cross sections: 
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 (17) 

 

Here, the first and second indices at the cross 

section show the helicities of the lepton and neutralino 
0~
i , respectively. For example, 





d

d Z
LL

)(

 defines the 

cross section of the spiral process 
00 ~~
jRiLRL    . 

As can be seen from the expression of the spiral 

sections (17), the sections 




d

d Z
LL

)(

 and 




d

d Z
RR

)(

 are 

zero at  , and the sections 




d

d Z
LR

)(

 and 




d

d Z
RL

)(

 

are zero at 0 . This is a consequence of the law of 

conservation of total momentum (see Fig. 3, where the 

directions of momenta and spins of initial and final 

particles are represented). 
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Fig. 3. Directions of impulses and spins of particles in the process 
00~~
ji  . 

 

 

 
 

Fig. 4. Directions of impulses and spins of the particles at  . 

 

Let us consider a spiral process 
00 ~~
jRiLRL     in the center-of-mass system at 

 . In this case the neutralino 
0~
i  flies out against 

the momentum of the electron (Fig. 4). 

The projection of the total momentum of the ini-

tial particles on the direction of the lepton momentum 

is 1 . However, the projection of the total momen-
tum of finite particles on the direction of the lepton 

momentum is equal 1  (see Fig. 4b). Thus, the law 

of conservation of the total momentum is not satisfied. 

Therefore, the departure of the neutralino 
0~
i  against 

the lepton momentum is forbidden by the law of con-

servation of the total momentum. The multiplier 
2)cos1(   in the expression for the corresponding 

cross section corresponds to this. 

Based on the differential effective cross section 
(15), let us determine the longitudinal spin asymmetry 

due to lepton (antilepton) polarization: 
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where 






















d

d

d

d ZZ ),0()0,( 2
)(

1
)(

 – is the differential cross section of the process (1) in the annihilation of 

the longitudinally polarized lepton and nonpolarized antilepton (nonpolarized lepton and longitudinally polarized 

antilepton). Given (15) in (18), we have 
 

   ]4]cos),()1)(1)[()[({()()( 22222
12 ji

rrGGrrrrrrGGggAA RLjijijiRLRL   

  }cos),())(( 2222
jiRLRL rrGGgg  )1)(1)[()[({( 2222

jijiRLRL rrrrGGgg  

 
122222 }cos),())((]4]cos),( 

  jiRLRLRLji rrGGggrrGGrr
ji

.         (19) 

 

Hence, the longitudinal spin asymmetry )(1 A , 

resulting from the annihilation of a polarized lepton 

with an nonpolarized antilepton, is equal in magnitude 

but opposite in sign to the longitudinal spin asym-

metry )(2 A , resulting from the annihilation of an 

nonpolarized lepton with a polarized antilepton. 

Measurement of the transverse spin asymmetry 

),( A , the angular forward-backward asymmetry 

)(FBA , the longitudinal spin asymmetries )(1 A  

and )(2 A  in the experiment allows, in principle, to 

obtain information about constants of the neutralino 

with the vector Z-boson LG  and RG . 

From the formula of the differential cross section 

(9), we can obtain expressions for the integral charac-

teristics of the process 
00 ~~
ji    . For this 

purpose, let us define the following expressions for 

the cross sections for the production of a neutralino 

pair: 

a) in the case of a transversely polarized lepton-

antilepton pair 
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b) in the case of longitudinally polarized 
 -pair 
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Let us also determine the cross sections for the neutralino production in the front (F) and back (B) hemi-

spheres in the case of nonpolarized particles: 
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From formula (20) of the cross section we define the transverse spin asymmetry ),(  sA , integrated on 

the polar angle of the neutralino  : 
 

 

jiRLjijijiRL

jiRL

RL

RL

rrGGrrrrrrGG

rrGG

gg

gg
sA

12)],()1)(1(3)[(

2cos),()(2
),(

22
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22 




 . (24) 

 

 

From the cross section formula (15) for the integral longitudinal spin asymmetry we obtain: 
 

 22

22

12

RL

RL

gg

gg
AA




 .                                                              (25) 

 

These longitudinal spin asymmetries depend only on the Weinberg parameter WWx  2sin  and at 

2315.0Wx   12 AA 14.7%. 

For the integral forward-backward asymmetry, we obtain the expression: 
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
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Let us estimate the above asymmetries in the 

processes 
0
2

0
1

~~   ee  and 

0
2

0
2

~~   ee . For the left and right coupling 

constants of the neutralino with the Z-boson we obtain 

expressions: 

1) in the process 
0
2

0
1

~~   ee : 

 ][
sin2

1
24142313 ZZZZGG

W
LR 


 ; 

2) in the process 
0
2

0
2

~~   ee : 

])()[(
sin2

1 2
24

2
23 ZZGG

W
LR 


 , 

the matrix elements of the and matrix 142313 ,, ZZZ  

and 24Z  are given in [11, 13]. 

Fig. 5 shows the angular dependence of the 

transverse spin asymmetry )(A  in the reactions 

0
2

0
1

~~   ee  (curve 1), 
0
2

0
2

~~   ee  

(curve 2) at  0, s 500 GeV,  12 2MM

150 GeV, tg 3, Wx 0.2315. 
 

 
  

Fig. 5. Dependence of the transverse spin asymmetry 

A  on    

 

Fig. 6 illustrates the energy dependence of the 

transverse spin asymmetry integrated along the polar 

angle   in the reactions 
0
2

0
1

~~   ee  (curve 

1), 
0
2

0
2

~~   ee  (curve 2) at the same values 

of the parameters as in Fig. 5. 

As for the forward-backward angular asymmetry 

)(FBA , as well as the forward-backward integral 

asymmetry FBA , we note that, due to the relation 

between the neutralino RL GG   bond chiral con-

stants in the reactions considered, they turn to zero 

0)(  FBFB AA . For this reason, the longitudinal 

spin asymmetries )()( 12  AA  do not depend on 

the angle of departure of the neutralino and are only 

functions of the left and right coupling constants of 

the lepton with the gauge Z-boson: 
 

22

22

12 )()(
RL

RL

gg

gg
AA




 . 

 

The energy dependence of the reaction 
0
2

0
1

~~   ee  cross section is presented in Fig. 

7 in three cases: 1) when the electron is polarized 

right: 11  ; 2) when the electron possesses left-

hand helicity: 11  ; 3) when the electron is non-

polarized. 
 

 
 

Fig. 6. Dependence of transverse spin asymmetry A  

on energy s .  

 

3. DEGREES OF LONGITUDINAL AND 

TRANSVERSE POLARIZATION OF THE 

NEUTRALINO 
 

In the previous section we were interested in the 

polarization properties of the lepton and antilepton, we 

determined the transverse and longitudinal spin 

asymmetries due to the lepton and antilepton polariza-

tions. Note that the study of the degrees of longitudi-
nal and transverse polarizations of the neutralino is 

also of some interest. They can give valuable infor-

mation about the interaction constants of the neutrali-

no with the gauge Z -boson LG  and RG . In this con-

nection, let us proceed to the study of the polarization 

characteristics of the neutralino. 
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Fig. 7. Dependence of the reaction 
0

2

0

1
~~   ee  

cross section on the energy s  at 11   (curve 

1), at 11   (curve 2) and nonpolarized lepton     

( 01  ) (curve 3). 

 

Let us consider the differential section of the 

process (1) taking into account the longitudinal polari-

zations of the lepton and neutralino: 
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0  – is the differential cross section of reac-

tion (1) in the annihilation of a polarized lepton and an 

nonpolarized antilepton: 

 

 
 

 

 






)]1()1({[),(

cos256

)()(
1

2
1

2

42

24
1

)(
0

RLji

W

Z
Z

ggrr
sDsg

d

d
  

  ]4)cos),()1)(1)(([( 222
jiRLjijijiRL rrGGrrrrrrGG   

  cos),())](1()1([ 22
1

2
1

2
jiRLRL rrGGgg ,                              (28) 

a ),(|| sP  – is the degree of longitudinal polarization of the neutralino: 
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If the neutralino is polarized transversely in the plane of production, then the differential cross section of 

the reaction 
00 ~~
jiee  
 will take the form (the lepton is polarized longitudinally): 
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where   – is the transverse component of the neutralino spin vector, 




d

d Z )( 1
)(

0  – is the differential cross sec-

tion for the annihilation of a longitudinally polarized lepton and an nonpolarized antilepton (formula (28)), and 

),(  sP  – the degree of transverse polarization of the neutralino is defined by the expression: 
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Figure 8 illustrates the dependence of the degree 

of longitudinal polarization of the neutralino in the 

process 
0
2

0
1

~~   ee  on the angle   at s

500 GeV and 11   (curve 1), 11   (curve 2) 

and at nonpolarized electron (curve 3). It follows from 

the figure that at 11   ( 11  ) the degree of 

longitudinal polarization of the neutralino is minimal 

(maximum), with an increase in the angle   it in-
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creases (decreases) and vanishes at an angle of 

=90. With a further increase in the angle  , the de-

gree of longitudinal polarization of the neutralino 

changes sign and increases (decreases).  
 

 

 
 

Fig. 8. Degree of longitudinal polarization of the neutralino  

           in the reaction 
0

2

0

1
~~ ee  as a function of the  

           polar angle   at 11   (curve 1), 11   (curve  

           2), at nonpolarized 
ee -pair (curve 3). 

 

 
 

Fig. 9. Dependence of the transverse spin asymmetry  

          ),(  sP  on the angle   in the reaction 

0

2

0

2
~~ ee . 

In the case of nonpolarized initial particles, the 

degree of longitudinal polarization of neutralino at the 

beginning of the angular spectrum is positive and 

gradually decreases with increasing angle. 

The angular dependence of the degree of trans-

verse polarization of the neutralino ),(  sP  in the 

process 
0
2

0
2

~~   ee  is shown in Fig. 9 for 

11   (curve 1), 11   (curve 2) and at nonpo-

larized electron (curve 3). As you can see, the degree 

of transverse polarization is maximum or minimum 

near the angle 60 or 150, vanishes at  = 0; 90 and 

180. 
 

4. AMPLITUDE AND CROSS SECTION OF 

THE PROCESS 
0
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0
2

* ~~)(    

 

We now turn to the study of the effective cross 

section of the process corresponding to the diagram b) 

of Fig. 1 with the Higgs boson exchange 

);( **** AhH . The Lagrangians of the interac-

tion of the Higgs boson   with a lepton pair and a 

neutralino pair are written in the following form [7, 

20]: 
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where in the case of CP-even Higgs bosons H  and 

h  a =1 and b =0 and 
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and in the case of CP-odd A -bosons a =0 and b =1 

and 
 




 tgm
a , 

  

 246 GeV is the vacuum value of the Higgs boson 

field, LG  and RG  – are the left and right interaction 

constants of the Higgs boson with the neutralino pair 
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1321  , the coefficients of ke  and kd  are equal: 
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Based on the Lagrangians (32), let us write down the amplitude of the corresponding diagram b) of Fig. 1: 
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)( skPGPGskugspubaspsgDgM jRRLLifi  


  .   (34) 

 

Here 
12 )()( 

  MiMssD , M  and   – are the mass and total width of the  -boson. 

The square of the modulus of the matrix element (34) with simultaneous accounting of the polarizations of 

all particles involved has the form: 
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where L  and   – are the scalars functions of the lepton-antilepton pair and the neutralino pair: 
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The effective cross section of the process in the case of arbitrary polarizations of the initial and longitudinal 

polarizations of the final particles can be represented as (in the center-of-mass system): 
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21 hhrrGGhhrrGGrr jiRLjiRLji  ,    (38) 

 

where n


 – a unit vector in the lepton momentum direction; 1


 and 2


 – unit vectors directed along the lepton 

and antilepton spins in their rest systems, respectively. 

The interaction constant of the  -boson with a lepton pair is proportional to the lepton mass m , therefore 

the study of the process of production of the neutralino pair in muon-antimuon collisions is of particular interest. 

Therefore, let us consider the process )( *  00 ~~
ji   in the case of a longitudinally polarized 

muon-antimuon pair: in which 11)( 


n , 22 )( 


n , 2121 )( 


, where 1  and 2  – are the he-

licities of the muon and antimuon: 
 

   )})(Re(2)1]({[),(
128

),,,( 21
*

21

22
22

2121
)( abbarr

sgg
hh ji

   

 )}(),()()1](,4)1)({[( 21
22

21
22 hhrrGGhhrrGGrrGG jiRLjiRLjiRL  . (39) 

 

It follows from this formula for the effective cross section that the muon and antimuon as well as the neu-

tralino 
0~
i  and 

0~
j  must have the same helicities: 121  , 121  hh . This is a consequence of the 

conservation of the total angular momentum in the transitions     and 
00 ~~
ji  . Diagram b) of 

Fig. 1 corresponds to four spiral sections: 

1) all particles are left-polarized: (  21 121  hh ): 

 }),()(4)1)({(~ 22222)(
jiRLjiRLjiRLLL rrGGrrGGrrGGba  

,  

2) all particles are right-handedly polarized: (  21 121  hh ): 

 }),()(4)1)({(~ 22222)(
jiRLjiRLjiRLRR rrGGrrGGrrGGba  

;  

3) initial particles are left-polarized and final particles are right-polarized: ( ,121   121  hh ): 

 }),()(4)1)({(~ 22222)(
jiRLjiRLjiRLLR rrGGrrGGrrGGba  

;  

4) initial particles are right-polarized and final particles are left-polarized ( ,121   121  hh ): 

 }),()(4)1)({(~ 22222)(
jiRLjiRLjiRLRL rrGGrrGGrrGGba  
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In these cases directions of impulses and spins of particles are shown in Fig. 10. 

 

 
 

Fig. 10. Directions of impulses and spins of particles in the process 
00* ~~)( ji  . 

 

As can be seen from Fig. 10, the directions of 

spins of the lepton and antilepton, as well as neutrali-

no 
0~
i  and 

0~
j  are directed opposite to each other, 

therefore, their total momentum is zero, the spin of the 

intermediate Higgs boson   is also zero, so in transi-

tions     and 
00 ~~
ji   the law of 

conservation of total momentum is satisfied. 

It follows from the above reasoning that we can 

distinguish contributions to the cross section of dia-
grams a) and b) in Fig. 1 from the spirals of the lep-

ton-antilepton pair. The contribution of the diagram 

with vector Z -boson exchange differs from zero if 

the lepton and antilepton have opposite helicities 

121  . However, the contribution of the 

-boson exchange diagram is zero in this case. If the 

lepton and the antilepton have the same helicity 

121  , then the contribution of diagram a) is 

zero, and the contribution of diagram b) is different 

from zero. 

On the basis of the effective cross section formu-

la (39), let us determine the longitudinal spin asymme-

tries due to the polarizations of the lepton and antilep-
ton: 

  

                                            

,
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
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



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












                   (40) 

 

here )0,( 1
)(  

 ( ),0( 2
)(  

) – is the annihilation 

cross section of the polarized lepton and nonpolarized 

antilepton (nonpolarized lepton and polarized antilep-

ton). From formulas (40) it follows that the longitudi-

nal spin asymmetry arising from the interaction of a 

polarized lepton with nonpolarized antileptons is equal 

to the longitudinal spin asymmetry arising from the 

interaction of polarized antileptons with nonpolarized 
leptons. 

Experimental study of these asymmetries  

22

*

21

)Re(2

ba

ab
AA


  

in the process 
00* ~~)( ji  

 can pro-

vide valuable information about the nature of the  -

boson. If the  -boson is a purely CP-even particle 

(like the )(hH  Higgs boson) or a CP odd particle 

(like the A -boson), the experiments will not reveal 

longitudinal spin asymmetry. 

In the case where the lepton-antilepton pair is po-

larized transversely, the effective cross section (38) 

will take the form:  

  

 
 ]sin)Im(2cos)([),()(
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*
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22222
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)( abbabarrsD
sgg

ji
  

 ]4)1)([( 22
jiRLjiRL rrGGrrGG  ,                          (41) 

 

where   the angle between the transverse spin vectors 1η


 and 2η


. This section leads to the following trans-

verse spin asymmetries due to the lepton-antilepton pair polarizations:  
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)()0(
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,                         (42) 
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)2()2(

)2()2(1
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A
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
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

.                            (43) 

 

The study of these transverse spin asymmetries is also a source of information about the nature of the  -

boson. If the  -boson is CP-even then the asymmetry is 13 A , and if it is CP-odd then this asymmetry is 

13 A . The difference from zero of the transverse spin asymmetry 4A  also indicates a violation of the CP-

accountability in the process 
00* ~~)( ji  

. 

From the effective cross section formula (39), let us determine the degree of longitudinal polarization of the 

neutralino by the standard formula : 
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.      (44) 

In the case when the neutralino 
0~
i  and 

0~
j  are polarized transversely, the differential cross section of the 

process 
00* ~~)( ji     has the following form: 
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,                                                (45) 

Where 
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sDsgg
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
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    (46) 

 

 

– is the differential cross section of the process, η  and η  – are the transverse components of the spin vectors of 

the neutralino 
0~
i  and 

0~
j , A  – is the degree of transverse polarization of the neutralino: 

 

 

jiRLRL

jiRLjiRL

rrGGrrGG

rrGGrrGG
A

ji



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
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])()1([cos2

22
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.                              (47) 

 

Let us estimate the degree of longitudinal ( P ) 

and transverse ( A ) polarization in the process 

0
2

0
1

* ~~)(   H . According to (33), the 

left and right Higgs boson H  coupling constants of 

the neutralino pair 
0~
i  and 

0~
j  are equal to each other 

RL GG  . As a consequence, the degree of longitu-

dinal polarization is zero, while the degree of trans-

verse polarization of the neutralino is equal to the co-

sine of the angle  : 

 cosA . 

 

The degree of transverse polarization is maxi-

mum at angle 0  ( A =100%) and turns to zero 

at 
2


 , then A  changes sign and decreases with 

increasing angle   and reaches a minimum at  : 

A –100%. 

Figure 11 illustrates the energy dependence of 

the cross section of the process  

)( *H 
 

0
2

0
1

~~   at tg 3, 

AM 500 GeV, and H 4 GeV.  

It can be seen that the cross section is maximum 

when the energy of the muon-antimuon pair is equal 

to the Higgs boson mass: HMs  =500 GeV. 

 

 
 
Fig. 11. Energy dependence of the cross section of the pro 

              cess 
00* ~~)( jiH  

.  
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5. AMPLITUDE AND CROSS SECTION OF 

THE REACTION 
00~~)

~
,

~
( jRL i    

 

We turn to the study of diagrams c) and d) of 

Fig. 1 with the exchange of scalar L
~

 and R
~

 leptons 

The Lagrangian of the interaction of lepton  , neu-

tralino 
0~
i  and scalar lepton L

~
 ( R

~
) is written as 

follows: 
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~
)~( 00

~~ 0 e.с.                                    (48) 

 

Based on this Lagrangian, it is easy to write the amplitudes of the t- and u-channel diagrams c) and d) of 

Fig. 1: 
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Here 
2

11 )( kpt   and 
2

21 )( kpu   – are the kinematic variables 
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~~ ))(()(
,,

 xmxxD
RLRL 

, 
L
if  and 

R
jf  – are the left and right interaction constants of the lepton, neutralino and scalar lepton [7, 15]: 
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e  and )(3 T  – and is the electric charge and the third projection of the weak lepton isospin  . 

Now let us find the square of the matrix element 
2

dc MM  , summed over the spin states of the neu-

tralino (lepton and antilepton are longitudinally polarized): 
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Here i , 1 j  are the sign factors appearing from the operator products in the S-matrix in connection 

with Vick's theorems [15]. 

Having the square of the matrix element, it is easy to calculate in a standard way the differential effective 

cross section of this process in the center-of-mass system we used the following relations: 
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It follows from this expression that, in the annihilation process, the lepton and the antilepton must have op-

posite helicities, either 121  , or 121  . 

Integrating by the angles of departure of the neutralino , we finally obtain 
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where 
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ij 0 at the production of different neutralinos  

( ji  ) and ij 1 at the production of identical neu-

tralinos (  ji 1, 2, 3, 4), 
L

m 
~  and 

R
m 

~  – are the 

masses scalar lepton L
~

 and R
~

. 

 
  
Fig. 12. Energy dependence of the cross section of the  

             reaction 
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Figure 12 illustrates the dependence of the effec-

tive cross section of the process 
0
2

0
2

~~)
~

;
~

(  
RLee   on the energy s  of 

the electron-positron beams at parameter values 
L

m 
~ =

R
m 

~ =40 GeV, Wx 0.2315,  12 2MM 150 

GeV,  200 GeV, tg 3. As can be seen from the 

figure, the cross section of the process 

)~;~( RL eeee   0
2

0
2

~~   decreases with in-

creasing energy of the electron-positron beams. 

 

CONCLUSION 
 

Thus, we have discussed the process of neutrali-

no pair production in arbitrarily polarized lepton-

antilepton (electron-positron or muon-antimuon) colli-

sions 
00 ~~
ji    . Diagrams with exchanges 

of neutral Z-bosons, scalar H  and h , pseudoscalar 

A -bosons, and scalar L
~

 and R
~

 leptons have been 

studied in detail. Expressions for the differential and 

integral cross sections of the process are obtained, and 

the longitudinal and transverse spin asymmetries due 

to lepton-antilepton pair polarizations, the forward-

backward angular asymmetry, and the degrees of lon-

gitudinal and transverse neutralino polarization are 

determined. The angular and energy dependences of 

these characteristics and the total cross section of the 

reaction are studied in detail. The results of the calcu-

lations are illustrated by graphs. 
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APPENDIX 
 

Here we give the expressions for the lepton tensor L  and the neutralino tensor  : 
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the notation is introduced here   baab)( . 

________________________________________ 

 

[1] ATLAS Collaboration. Observation of a new 

particle in the search for the Standard Model 

Higgs boson with the ATLAS detector of the 

LHC. Phys. Letters, 2012, B 716, p. 1-29. 

[2] CMS Collaboration. Observation of a new boson 

at mass of 125 GeV with the CMS experiment at 

the LHC.  Phys. Letters, 2012, B 716, p. 30-60. 

[3] V.A. Rubakov. UFN, 2012, V.182, No 10, 

p.1017-1025 (in Russian). 

[4] A.V. Lanev. CMS Collaboration results: Higgs 

boson and search for new physics. UFN, 2014, 

V. 184, No 9, p. 996-1004 (In Russian). 

[5] D.I. Кazakov. The Higgs boson is found: what is 

next? UFN, 2014, V. 184, No 9, p. 1004-1017 
(In Russian). 

[6] ATLAS Collaboration. Measurements of Higgs 

boson production and couplings in diboson final 

states with the ATLAS detector at the LHC. 

Phys. Letters, 2013, B 726, p. 88-119. 

[7] A. Djouadi. The Anatomy of Electro-Weak 

Symmetry Breaking. Tome II: The Higgs boson 

in the Minimal Supersymmetric Standard Model. 

arXiv: hep-ph/0503172v2, 2003; DOI: 

10.1016/j.physrep.2007.10.004. 

[8] J.F. Gunion, H.E. Haber. Higgs bosons in Su-

persymmetric. Phys. Rev., 2003, D 67, p. 

0750.19. 

[9] D.I. Кazakov. Supersymmetry on the Run: LHC 

and Dark Matter. Nucl. Phys. B Proc. Suppl., 

2010, Vol. 203-204, p. 118-154. 

[10] R.K. Barman et al. Current status of MSSM 

Higgs sector with LHC 13 TeV data. Eur. Phys. 

J. Plus, 2019, Vol. 134: 150, No 4 arXiv: 

1608.02573v3, [hep-ph] 

[11] M.M. El Kheishen, A.A. Shafik,  

A.A. Aboshousha. Phys. Rev., 1992, Vol. 45, No. 

11, pp. 4345-4348. 

 DOI:https://doi.org/10.1103/PhysRevD.45.4345 

[12] A. Djouadi, P. Janot, J. Kalinowski,  

P.M. Zerwas. SUSY Decays of Higgs Particles. 

CERN PPE/96-34, 1996, 13p. 

[13] A. Djouadi, J. Kalinowski, P. Ohmann,  

P.M. Zerwas. Heavy SUSY Higgs bosons at e–e+ 
linear colliders. Z. Phys., 1997, C 74, p. 93-111. 

[14] A. Bartl, H. Fraas, W. Majerotto. Signatures of 

chargino production in e+e—collisions. Z. Phys., 

1986, B 30, p. 441-449. 

[15] A.  Bartl, H. Fraas, W. Majerotto. Production 

and decay of neutralinos in e+e–-collisions. J. 

Nucl. Phys., 1986, B 278, p. 1-25 

[16] E.Ch. Christova, N.P. Nedelcheva. Neutralino 

production on polarized e+e–-collisions. Preprint, 

Dubna, 1988, E2-88-607, 14p. 

[17] S.M. Bilenky, N.P. Nedelcheva. Possible test for 

supersymmetry in e–e+-collisions with polarized 

beams. Preprint, Dubna, 1986, E2-88-494, 10p. 

[18] P. Cheapetta, J. Soffer, P. Taxil, F.M. Renard, 

 P. Sorba. Supersymmetry and polarization in e–



S.K. ABDULLAYEV, M.Sh. GOJAYEV, A.K. GULAYEVA 

62 

e+-collisions (I).  Nucl. Phys., 1984, Vol. B259, 

p. 365-396. 

[19] S.K. Abdullayev, M.Sh. Gojayev, A.K. Gulayeva. 

The production of a chargino pair in polarized 

lepton-antilepton collisions (I). AJP, Fizika, 

2020, V. XXVI, No 3, p. 20-30. 

[20] S.K. Abdullayev, M.Sh. Gojayev, A.K. Gulayeva. 

The production of a chargino pair in polarized 

lepton-antilepton collisions (II). AJP, Fizika, 

2020, V. XXVI, No 4, p. 19-27. 

 

 

 

 

Received: 15.02.2021 

 



AJP FIZIKA                                          2021                         volume XXVII №1, section: En  

63 131, H.Javid ave, AZ-1143, Baku 

ANAS, Institute of Physics 

E-mail: jophphysics@gmail.com 

 

 

THE FERMI LEVEL TUNING BY ANNEALING IN SELENIUM VAPOR 

AND ARGON PLASMA ETCHING OF Bi2Se3 SURFACES 

 

S.Sh. GAHRAMANOV1, Y.A. ABDULLAYEV1, A.A. BADALOV1,         

K.M. JAFARLI1, N.A. ABDULLAYEV1,2, K.Sh. GAHRAMANOV1 
1Institute of Physics of ANAS, AZ1143, H.Javid ave., 131, Baku, Azerbaijan                                                                                                         

2Baku State University, AZ1148, Z. Khalilov str., 23, Baku, Azerbaijan                      

 e-mail: samir.gahramanov@gmail.com 

 
In the near-surface area of Bi2Se3 crystals, in order to reduce concentration of charge carriers and Se vacancies, which 

are electronic donors, annealing in selenium vapor was used. It has been established that the most optimal mode is annealing 

at a temperature of 100-150 °C for 70 hours. Effective impact on the surface condition with an identical purpose is exerted by 

processing the sample in a glow discharge in an argon medium. It was determined that treatment with an ions dose of ~1,1·1017 

ion/cm-2, both after and without preliminary treatments in the form of annealing or chemical etching, leads to a significant 
decrease in concentration of carriers in crystals near-surface area. 

 
Keywords: concentration of carriers, Se vacancies, annealing, selenium vapor, discharge, argon medium, treatment, ions dose, 

chemical etching.                                                                                                                                                
PACS: 78.20.Jq, 78.68.+m,  

 

INTRODUCTION 

 
Bi2Se3 crystals of AV

2B
VI

3 type semiconductors are 

topological insulators (TI) –materials, with previously 

predicted and recently detected condensed state of 

matter [1-4], which allows unhindered movement of 

electrons in surface layers due to strong spin-orbit 

interaction and formation spin splitted surface states, 

which topologically protected from scattering by 

defects by symmetry with respect to time reversal. A 

continuous spectrum of these surface states forms a 

Dirac cone around point Г of the Brillouin zone, where 

the direction of the spin moment is orthogonal to the 

wave vector. These materials surfaces study is a 

scientific and practical interest in the creation of high-
speed devices and the miniaturization of their working 

elements.  

The crystal structure of the Bi2Se3 compound 

belongs to the space group D5
3d and has a layered 

structure, represents a set of layers - quintets, 

perpendicular to the third-order symmetry axis C3. 

Each quintet (QL) consists of five layers that alternate 

in the sequence Se(1)–Bi–Se(2)–Bi–Se(1). Chemical bonds 

in compound Bi2Se3 inside quintets are ion-covalent 

type, the connection between quintets carried by van 

der Waals forces. 

These materials are doped to remove defects in the 

bulk of the material, which creating energy levels in the 

band gap and fixing the position of the Fermi level [5], 

becouse of control Fermi level relative to the Dirac 

node is a necessary condition for the practical use of 

topological insulators.The position of Fermi level is 
closely related to morphology and composition of 

surface, which affect the surface states in TI. In [6], it 

was noted that the real cleaved surface of these 

compounds consists of terraces with a step height, 

mostly a multiple of QL, against which terraces 

(islands) ending in semimetal atoms are observed.The 

presence of an additional surface charge on these 

islands shifts the EF position to the region of higher 

energies. Although it is known that topological surface 

states (TSS) are resistant to non-magnetic surface 

disturbances, their dispersion of zones and spatial 

distribution are yet sensitive to surface defects.In 

particular, Se vacancies significantly modify the band 

structure of the Bi2Se3 surface. Enrichment with 

bismuth is usually observed with the growth of a crystal 

of stoichiometric composition due to the relative 

easyvolatility of the chalcogen. There are differences in 

the energy of the formation of Se vacancies, which are 

the main donor defects, in two nonequivalent layers of 

the chalcogen Se(1)and Se(2), and the vacancies in the 

position Se(1) have the lowest formation energy of all 

intrinsic defects.This leads to the formation of n-type 

defects without significant compensation by p-type 

defects to a level of at least 0.1 eV above the bottom of 
the conduction band. In the presence of Se vacancies on 

the surface, several dangling bonds appear that interact 

with TSS, three dangling Bi bonds form under one Se 

vacancy, and, accordingly, three new states near the 

Kpoint  of Brillouin zone of the surface.The state at 0.4 

eV is mainly associated with the p-orbitals of three Bi 

atoms, which have dangling bonds. The states below EF 

are formed mainly by these three Bi atoms and partially 

by the p-states of Se(2) atoms [7].The vacancies of Se 

and antisite defects of SeBi, as the effect of electron 

doping, shift the Fermi energy upward to the 

conduction band; with increasing their density, the 

band structure becomes more complicated. A small 

number of Se vacancies on the surface do not destroy 

TSS, and with an increase in their number that violates 

the spin- orbit interaction, topological surface states can 

down from the first to the second quintet layer and 
separate from vacancies [7]. 

Annealing in selenium vapor leads to decrease in 

vacancies and number of charge carriers [8]. In [9, 10], 

it was shown that along with terraces ending chalcogen, 

terraces ending in bismuth can be observed, in [7] to 

study the band structure and charge density of surface 

states with a large number of Se-vacancies and layers 

ending Se or Bi, first-principle calculations were used. 

The substitutional defects of Se(1) edge atoms in 
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quintets should not cross the critical threshold, since a 

change in the p-state symmetry will affect the 

probability of inversion of states in the Г point vicinity 

of Brillouin zone. In some works, the issue of surface 

stability and stability during exposure in air was related 

to the dependence on the surface imperfection, such as 

vacancies, substitution defects, dangling bonds [11, 

12].The formation of oxides up to 1 nm thick was 

observed, which could lead to a deterioration of 

topological surface states [13].Oxidation of bismuth 

atoms is possible with selenium vacancies or 

substitution of upper layers selenium by bismuth, in 

this case, dangling bismuth bonds that exist on the 

surface can interact with oxygen, and surface oxidation 

begins primarily with them. Bi2Se3(0001) surface 

properties stability, and for most layered crystals, is 

related to the degree of surface perfection, since the 
Se(1) atoms of ideal (0001) surface have closed electron 

shells with bonds directed inside the quintets and have 

no unsaturated bonds [12].An ideal Bi2Se3 surface 

ending in a Se(1)  layer has topological surface states 

(TSS) described by a single Dirac cone inside the bulk 

gap [7], which is consistent with calculations [2] and 

experiment [3]. 

Argon plasma etching is used in combination with 

lithographic methods for the manufacture of devices 

based on a topological insulator. Surface treatment with 

argon plasma [14] was used to reduce imperfection and 

to understand the effect of argon etching on topological 

insulators. 

The purpose of this work is to study the surface 

properties of (0001)Bi2Se3 and establish the 

relationship between structural excellence and 

electronic properties during annealing in selenium 
vapor and treatment with argon plasma. 

 

EXPERIMENT AND RESULTS 

 
The morphology and electronic properties of the 

(0001) surface were studied, and the effect of annealing 

in selenium vapor and treatment with argon plasma on 

the surface properties of Bi2Se3 crystal was studied. We 

studied n-type samples of Bi2Se3 crystals obtained by 

the Bridgman method with a carrier concentration of     

n = 1.1x1019 cm-3 and a thermopower α = -52 μV /deg. 

The crystal surfaces obtained by cleavage along the 

chipped plane (0001) were studied.The surface 

composition of single crystals was studied on aX’Pert 

Pro XRD X-ray diffractometer of Panalytical B.V. 

(radiation at 45 kV and 40 mA in CuKα, scanning at 

0.01 2θ ° steps and 1.2 s time).Surface images were 
obtained on an NC-AFM brand AFM at room 

temperature. The electronic properties were 

investigated by modulation spectroscopy of a weak-

field electric reflection (ER) of light, using a 1-molar 

solution of KCl in water.The surface field was varied 

by applying an external potential difference to the 

electrostatic capacitor, one of the electrodes of which 

was a semiconductor, at a modulation frequency of the 

surface potential of the semiconductor of 512 Hz. The 

electric field of the surface space charge was regulated 

by applying a constant potential, bias. The effect of 

surface treatment on optical transitions near the critical 

points of the band structure made it possible to judge 

the state of the surface by a changing the broadening 

parameter, height and peak shift of the ER spectrum.A 

type of electro-optical effect, in which the position of 

Fermi level on the surface of a semiconductor changes 

under the influence of an external field or a charge of 

surface states, is usually called the zone filling effect 

(ZFE). In the ER spectra, the effect can manifest itself 

not only at the edge of the fundamental absorption of 

the material, but also at all allowed interband 

transitions, including unoccupied states near the Fermi 

level. When the electric bias is applied, the Fermi level 

remains unchanged in the bulk of the crystal, however, 

near the surface the filling of zones changes along the 

direction from the depth of the volume to the surface. 

In the method of electroreflection, light penetrating to 

a certain depth probes levels with different filling 
levels. Moreover, the mechanism of electroreflection is 

not just a transition associated with a critical point in 

the Brillouin zone. For the regime of accumulation on 

the surface, the modulation of band filling becomes the 

dominant ER mechanism.With strong doping of 

narrow-gap semiconductors, the Fermi level is 

advanced far into the conduction band. Under these 

conditions, the Franz-Keldysh effect in 

electroreflection is suppressed and practically does not 

appear.If the Fermi level is near the bottom of the 

conduction band, then both effects contribute to the ER 

mechanisms: the ZFE, which in the general case gives 

a broadened monopolar structure with an energy shift 

that grows with an applied field, and Franz-Keldysh, 

which appears as a bipolar line corresponding to a 

certain critical point [15,16].When the electric field 

creates a depleting bending of the zones, the Franz-
Keldysh effect can become the predominant 

contribution to ER. 
 

 
 

Fig. 1. ER spectra of Bi2Se3 crystals annealed in Se vapor for  

           70 hours at various temperatures:1-initial surface, 2-5              
            at 100, 150, 250, 300 0С, at bias voltages -0.3V,  

            modulation 0.4V. 

 

The ER spectra of Bi2Se3 samples annealed in 

selenium vapor at various temperatures and durations 

were measured in unpolarized light at constant bias and 

modulation voltages in the spectral range of 1.8 - 2.7 
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eV, shown in Fig. 1, were studied T3and T4.3(notation 

according to [17]) structures of spectra. 
 

 
 
Fig. 2. ER spectra of Bi2Se3 crystals annealed in Se vapor at  

            300 0С for 70 hours, at bias and modulation voltages,  

            1-3: +0.3 and 0.5; +0.5 and 0.5; +0.8 and 0.5 V, 
respectively. 

 

In the ER spectra of Bi2Se3 samples annealed in 

selenium vapor on Fig. 1, curve 2 shows a decrease in 

half-width of the integral spectral line and a shift of 

maximum to the longer wavelength region compared 

with the spectrum from the initial surface on curve 1. 

Changes in the spectrum indicate a decrease in the 

concentration of free electrons with a simultaneous 

decrease in scattering on surface defects, which can be 

explained by the filling of selenium vacancies upon 

annealing.This is confirmed by the disappearance of 

bismuth atoms peaks in X-ray diffraction patterns from 

the surface annealed in selenium vapor, see Fig. 3, b), 

compared with the initial surface containing bismuth 

peaks, see Fig. 3, a). For Bi2Se3 intrinsic defects in 

selenium enriched compositions, the energy of the 

formation of Se vacancies increases, and the formation 

energy of the acceptor-type bismuth vacancies 

decreases.Based on this a lower n-type conductivity can 

be expected when the Fermi level moves into the band 

gap in the volume, trying to cross the energy of 

formation of selenium and bismuth vacancies. 

Reduction of n-type defects - selenium vacancies also 

contributes to a decrease in electron concentration. 

The shape of curve 3 in Fig. 1 shows that a further 

increase in the amplitude and shear with an increase in 
the annealing temperature is accompanied by an 

increase in the integral half-width of the spectral line in 

comparison with the initial surface. The intensification 

of light scattering that is already manifesting can be 

associated with the diffusion of excess Se atoms into 

the crystal lattice as defect centers, as well as with the 

aggregation of unevenly distributed surface 

nanoformations - vapor deposition products, see Fig. 

4.In this case, the probability of occurrence of anti-

structural defects of SeBi, is high, the formation energy 

of which becomes the lowest in the band gap [7], and 

for all growth variants they are donors, even if the 

Fermi level is at the bottom of the conduction band or 

is slightly higher. 

 

 

 
Fig.3. X-ray diffraction pattern from the initial surface of Bi2Se3 - a); and from the surface of Bi2Se3 annealed in selenium           
           vapor for 70 hours at 2000C - b). 
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                                              а)                                                                                 b) 

 
Fig. 4.  3D AFM images at room temperature of Bi2Se3 (0001) surface annealed in Se vapor for 70 hours, at 1500С - а)   and at 

3000С - b). 

 

This trend persists until the annealing temperature 

of 250-3000С, as can be seen in Fig. 4 a) and b), an 

increase in the annealing temperature leads to 

nanoislands enlargement on the surface. A further 

increase in the temperature of Se vapors up to 3500С 

does not lead to any significant changes in the ER 

spectrum. 

As noted above, in the electroreflection of crystals 

with a high carrier concentration (n ≈1018-1020 cм-3), the 

modulation of band filling prevails, the dominant role 
of which increases when enrichment bias is applied.The 

ER spectrum main features corresponding to the band 

filling modulation mechanism is its monopolarityand 

independence from light polarization. Under certain 

conditions, in degenerate Bi2Se3 crystals, it is possible 

to partially suppress the ZFE mechanism and activate 

Franz-Keldysh effect in the formation of the ER 

spectrum. This possibility was realized by transferring 

the bias into the depletion mode, as well as by treating 

the surface of the sample with argon plasma while 

maintaining a negative enrichment bias. Corresponding 

measurements were carried out on n-type Bi2Se3 

crystals with n=1,1х1019 cm-3.  

The polarization anisotropy coefficient for 

monopolar spectra measured in the region of even weak 

surface enrichment turned out to be 1.3. When 

measuring the ER in the region of depletion bending 
zones, a monopolar line was transformed into a 

structure of two opposite in sign lines with 

approximately equal amplitudes, and the polarization 

anisotropy coefficient increased to 2.2.  

To observe  the polarization-dependent dipolar 

spectrum in the samples annealed in selenium vapor at 

300°C for 70 hours, a larger depletion bias was 

required, causing the zones to bend upward (Fig. 2). 

This indicates an increase in the concentration of 

charge carriers with increasing annealing temperature, 

which is associated with the diffusion of excess Se 

atoms into the crystal lattice as defective donor 

centers.A similar transformation of the monopolar 

polarization-isotropic spectrum from the initial surface 

of the sample into a dipolar anisotropic occurred after 

the sample was treated in a glow discharge in argon, 

and the effect occurred while maintaining a negative 

bias on the sample. 

 

 
 
Fig. 5.  ER spectra of Ar-plasma treated Bi2Se3 crystals:  1-            
             initial surface, 2-5– treatment in the discharge by ion  

             doses, respectively, D≈ 3,6·1015; 1,1·1016;  1,1·1017;  

             4,3·1017, at bias voltages  -0.3V, modulation 0.4V. 

 

Studied crystals exposed to glow discharge in 

argon medium with ions doses D≈ 3,6·1015; 1,1·1016; 

1,1·1017; 4,3·1017  ion /cm-2, the discharge current 

density was 0.2 A /m2 at a voltage of 1.0-1.2 kV, the 

treatment time varied from 30s to 60min.Figure 2 
shows the light ER spectra from the surfaces of Bi2Se3 

crystals before and after treatment in Ar-plasma. 

Processing of fresh cleavage for 30s led to a weakening 

and broadening of the spectrum (curve 2) in 

comparison with the spectrum from initial surface 

(curve 1).Note that in the case of Bi2Se3, a broadened 

structure of the spectrum is observed and the 

phenomenological broadening parameter Г= ђ ⁄ τ 

determined by the scattering processes by impurities, 
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phonons, and other imperfections in the crystal 

structure is only an integral part of the general 

broadening of spectrum.A significant part of the half-

width of the spectrum is associated with field 

broadening, which is sufficiently large at high levels of 

bias and modulation on the crystal.Leaving the bias and 

modulation on the samples unchanged by changes in 

the overall broadening of the spectra at various stages 

of plasma treatment, one can judge the changes in the 

imperfection of crystal near-surface layer.From these 

positions, the shape of curve 2 of spectrum indicates the 

appearance of a defective layer on crystal surface, 

probably due to the deposition of argon ions and their 

partial incorporation with the formation of radiation 

defects in near-surface region.With an increase in 

plasma treatment time to 1.5 min, the amplitude of the 

spectrum grows (curve 3) and reaches a value greater 
than that for the initial surface (curve 1), while the 

broadening of the spectrum decreases. Consequently, 

during the treatment of 1.5 min, corresponding to the 

dose of argon ions incident on the surface, D≈ 1,1·1016  

ion / см-2, prevails process of plasma etching the 

surface.Further processing with argon plasma up to 15 

min. with an ion dose of ~ 1,1·1017 ion/cm-2, the 

amplitude decreased and the monopolar spectrum was 

transformed into two split peaks of opposite sign   

(curve 4). Apparently, after plasma cleansing of the 

surface, selenium atoms are knocked out, followed by 

adsorption on broken bonds of oxygen atoms of the air, 

which have a high electron affinity.As a result, a layer 

of positive space charge can form in the near-surface 

region due to localization of surface electrons on 

oxygen atoms and receiving of a near-surface electron-

depleted layer.Although in this case, judging by the 
results of studies [14], where the action of argon plasma 

causes the broadening of characteristic Raman peaks 

without a significant change in the position of the peak, 

we can only assume structural transformation of the 

surface, and not its oxidation.Taking into account the 

high concentration of free charge carriers and the 

degeneracy of the samples, we note that the spectra are 

1, 2, 3, in Fig. 5 correspond to the effect of band filling, 

and the dipolar shape of spectrum 4 and the long-

wavelength shift of its energy position indicate that the 

surface of the semiconductor has turned into a non-

degenerate state. Processing in Ar-plasma for 1 hour 

leads the surface to almost complete structural disorder 

(curve 5). 

 

CONCLUSION 

 
The results of these studies show that, for layered 

Bi2Se3 crystals, along with the deposition of NО2 [18], 
HfO2 [19] and other surface hole donors, by which it 

was possible to achieve the alignment of the Dirac cone 

site with EF, annealing in selenium vapor can be used 

to reduce vacancies Se, which are electronic donors: it 

has been established that the most optimal mode is 

annealing at a temperature of 100-1500С for 70 

hours.Effective impact on the surface condition with an 

identical purpose is exerted by processing the sample in 

a glow discharge in an argon medium. It was 

determined that treatment with an ion dose of ~1,1·1017 

ion/cm-2, both after and without preliminary treatments 

in the form of annealing or chemical etching, leads to a 

significant decrease in concentration of carriers in 

crystals near-surface area. 
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