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TECHNOLOGY OF ALUMINUM DEEP PURIFICATION BY ZONE MELTING 

METHOD USING ULTRASONIC WAVES  
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The method of three-stage zone melting for deep purification of А85 (99,85%Al) aluminum mark is used. The ultrasonic waves 

for intensification of liquid mixing and diffusion processes during zone melting are used. The optimal parameters of ultrasonic waves 

are defined by experimental methods. It is shown that the use of ultrasonic waves with frequency 20 kHz and intensity 0,4Vt/cm2 

allows us to increase the aluminum purity level up to 99,999% in comparison with usual process of zone melting.    

 

Keywords: purification, aluminum, zone melting   

PACS: 81.05 Rm 

                                           
INTRODUCTION 

 

The modern industry can’t be imagined without 

aluminum and its melts. The aluminum and its melts are 

used in many industry fields: aircraft building, 

shipbuilding, transport, technique, building, cable 

production, oil and chemical industries and etc.  

The purer aluminum is mainly widely applied in 

electronics from electrolytic capacitors up to 

microprocessors, in cryoelectronics, cryomagnetics, in 

critical parts of chemical equipment working in corrosion-

active mediums or at extremely low temperatures, modern 

radar engineering and especially critical products of 

atomic power engineering.  

The purity of industrial aluminum (99,5 – 99,8%) in 

series of cases isn’t enough, as the higher degree of 

industrial aluminum purification obtained by electrolysis 

for these goals, is required. Note that last time many 

investigations concerning to different methods of 

aluminum purification (electrolytic, crystallized, 

distillation) are carried out [1-3]. The zone purification 

method of pure aluminum obtaining is the more practical, 

industrial and effective one [2-7].  

  The zone melting principle is in multiple passing of 

molten zone along aluminum ingot. These impurities can 

be divided into three groups by values of distribution 

coefficients К=Сsol/Сliq (where Сsol is impurity 

concentration in solid phase and Сliq is impurity 

concentration in liquid one) which essentially define the 

purification efficiency from impurities. The impurities 

decreasing the aluminum melting point are to first group. 

They have К<1, locate in molten zone and are transferred 

by it to ingot end part at zone melting. Ga, Sn, Be, Sb, Ca, 

Th, Fe, Co, Ni, Ce, Te, Ba, Pt, Au, Bi, Pb, Cd, In, Na, 

Mg, Cu, Si, Ge, Zn belong to these impurities.  

The impurities increasing the aluminum melting 

point are to second group.  They have К>1 and locate in 

solid part (heading) of ingot. Nb, Ta, Cr, Ti, Mo, V are to 

these impurities.  

The impurities with distribution coefficient which is 

very close to 1 (Mn, Sc) belong to the third group. These 

impurities aren’t practically scavenged at aluminum zone 

melting. 

  According to [8-9] the purification efficiency from 

impurities at zone melting depends on redistribution 

coefficient К=Сsol/Cliq. However, the crystallization front 

travel rate and liquid stirring rate before crystallization 

front essentially influence on impurity distribution 

between liquid and sold phases at crystallization. It may 

be shown that for impurity having K<1 the moving 

crystallization front displaces the impurities with bigger 

velocity than their diffusions from liquid in growing 

crystal.  

By this reason the region with increased impurity 

concentration forms before the crystallization front. The 

thickness of this layer, composition and impurity 

concentration determine the parameters of diffusion 

impurity from liquid in growing crystal. The thickness of 

this layer also depends on hydrodynamics of liquid metal 

and usually has the size about 10
-3

-10
-5

 m. The diffusion 

coefficient has the value in limits of 10
-9

 - 10
-8

 m
2
/sec, 

although their values aren’t determined for all impurity 

types. The component excess (К<1) will increase in case 

of diffusion difficulty in liquid phase on crystallization 

front during zone travel. The forming solid phase is 

deplated by this component. This leads to solid phase 

crystallization not from the main phase but from the layer 

neighbouring to crystallization front in which impurity 

concentration increases that leads to decrease of impurity 

separation effect. Thus, the difficulty of the component 

diffusion in liquid state prevents to the separation or 

impurity purification at zone melting. The ultrasound is 

applied in works [5, 8-10] with the aim of impurity 

concentration decrease on crystal-melt boundary and 

intensity increase of impurity diffusion into melt depth. It 

is established that influence of ultrasonic waves of 

determined frequency increases the intensity of impurity 

diffusion into liquid depth and increases the purification 

efficiency [8-11].The ultrasonic waves are used by us for 

the intensification of mixing of liquid and diffusion 

processes during aluminum zone melting. We give below 

the results of carried out experiments.  
 

EXPERIMENTAL PART 
    

Taking into consideration the aluminum chemical 

activity, the aluminum zone melting is carried out in 
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crucibles, which are inertial ones for the process. The 

high melting point and inertia to cleanable material are 

the main requirements to the crucible material. The 

carbon-base glass is the more stable material to aluminum 

melt. The carbon-base glass has the high thermostability 

in inertial gas and vacuum up to 3000° C. The high-

quality polished surface, maximal chemical stability and 

low acceptance by metal melts and other substances are 

the main advantages of carbon-base glass crucibles and 

boats. The boats from carbon-base glass of SIGRADUR 

mark (Germany) are used in our experiments.         

  The aluminum purification process is begun from 

metal surface purification on oxide film. Note that 

aluminum oxide forms the additional crystallization 

centers at solidification of a metal that leads to 

disturbance of impurity redistribution effect between 

ingot solid part and its molten zone. Besides, the 

aluminum oxide is the impurity active adsorbent that also 

badly influences on metal purification.  

  The metal ingots are cut by crucible sizes and the 

surface is etched by 10% hydrochloric acid at 60°С. 

Further, the ingots are washed in distillated water, swilled 

out by deionized water and dried in vacuum. Later, the 

metal degassing is carried out. The metal degassing 

before its zone melting is carried out by the way of 

melting and its endurance in vacuum 10
-3

 mm of mercury.   

Further, the preliminary aluminum vacuum 

remelting is carried out. The melting and endurance of 

aluminum in vacuum (~10
-3

 mm of mercury) in melted 

state at 720-740°С essentially decrease (3-5times) the 

content of hydrogen and magnesium and zinc impurities 

[12-13]. The quantity of zinc impurity after the endurance 

during 2 hours is decreased in 4 times. Besides, the 

average gas content of initial aluminum 0,21cm3/100gr 

after endurance during one hour is decreased in more than 

2 times and after 8 hours the gas content in metal isn’t 

practically revealed. However, as analyses show the 

quantity of impurities of cuprum, iron and silicon aren’t 

practically changed after melting and long endurance of 

aluminum.  

The scheme of installation used for aluminum 

purification is shown in fig.1. It is carried out in 

horizontal variant. The device consists of two independent 

purification reactors. Each channel has three successive 

cascades of heaters. The two independent material 

purification processes in quantity 50-250gr in temperature 

interval  50-1050ºС are carried out on the device.      

 

 
 

Fig.1. The scheme of installation of cascade zone melting. 

          1 is crucible with substance; 2 are haters; 3 is vacuum-   

          degassed ampoule; 4 are holders; 5 is guide tube. 

 

The two similarly prepared and evacuated quartz 

ampoules with aluminum put into carbon-base glass 

crucibles are loaded on the device. It is shown in fig. 2.  

 
 

Fig.2. The boat from carbon-base glass for aluminum zone  

          melting. 

 

The prepared ampoules with substances are put into 

guide quartz tubes of the device. The heating resistors 

forming the narrow ingot molten zone, moving towards 

with heater, shift outside along ampoule with aluminum 

ingot. The zone temperature is 750° С. The device heaters 

are defended with oval screen allowing concentrating the 

thermal radiation inside the heating ring. Note that 

furnace electric resistances are comfortable ones in work 

and don’t require the complex equipment for electric 

power supply and process regulation. The aluminum ingot 

length is near 250mm, the molten zone width is 30-

35mm, the velocity of zone displacement is chosen on the 

base of experiment results and it is 20mm/h. The cascade 

passing number along ingot is 10.  

The aluminum zone purification without external 

influences is carried out in first reactor. The same process 

of zone recrystallization is carried in second channel by 

ultrasonic oscillation influence. For this two soldered 

adaptations parallel each other are in ampoule ends and 

the ultrasonic vibrator sensor is attached to one of these 

ampoule ends. The ultrasonic generator of G3-109series 

with piezoelectric transformer is used in our case. The 

other end of this ampoule is put into device holder clutch 

filled by smooth silicon material of «Elstolux-М» mark 

for damping of ultrasonic oscillations. 

The ultrasonic oscillation frequency is chosen in 

interval 15-20kHz with the fact that the cavitation 

threshold increase in melt takes place at frequency 

increasing more than 20kHz, i.e. minimal value of sound 

pressure enough for cavitation appearance at given 

conditions increases. The intensive mixing of melt 

components doesn’t take place at frequency less 15kHz. 

The intensity of radiation is chosen in interval                

0,3 - 0,5 Vt/cm
2
. Our results allow us to recommend the 

frequency given intervals and ultrasonic oscillation 

intensities. 

The analyses of obtained ingot purity are carried out 

after 10 cycles of zone melting. The initial and end parts 

(approximately 20% of ingot length) are cut off the each 

ingot. The samples which are pressed up to necessary 

dimensions are cut off midsection of ingots (60% of 

length) and analyses on roentgen-fluorescent spectrometer 

“S8 TIGER” are carried out on them. The analysis results 

of purified aluminum ingots are given in Table1.  

According to results given in table 1 the main 

substance purity increases almost on one order after 10 

passes of aluminum purification of mark A85 on 

installation of cascade zone melting. Moreover, the 

content of Fe and Si decreases almost in 30 times, Zn 

decreases almost on one order and cuprum quantity 

decreases in three times. The titanium impurity quantity 
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becomes less roentgen-fluorescent sensitivity value        

(10
-4

%).      

The change of impurity content in aluminum after 

zone melting and after zone melting with application of 

ultrasonic waves is compared in table 1. These data show 

the significant decrease of impurity content in aluminum 

after application of ultrasonic waves during zone melting. 

According to carried out analyses the quantity of content 

of Fe and Si impurities in aluminum ingot decreases up to 

3∙10
-4

% level and content of Cu and Zn impurities 

decreases up to 2∙10
-4

% that exceeds the aluminum purity 

level obtained using the zone melting after 10 cycles of 

three-cascade zone purification and application of 

ultrasonic waves with frequency 20kHz and intensity 

0,4Vt/cm
2
.  

The obtained positive result of aluminum 

purification level by zone melting method with 

application of ultrasonic waves is the result of 

intensification of liquid mixing and diffusion processes 

during zone melting processes.  

 

                                                                                                                                                                   Тable 1. 

The analysis results of aluminum ingots purified by zone melting method. 
 

 

      Purification method 

 

Chemical composition and impurity quantity in % 

 

 

Main 

substance in     

  % Fe Si Cu Zn Ti 

Initial aluminum of  

 mark A85* 

0,08 0,06 0,01 0,02 0,008 99,83% 

Three-cascade zone  

 melting (10 passes) 

 

0,003 0,002 0,003 0,002 - 99,99% 

Three-cascade zone  

melting (10 passes)    

with ultrasonic wave  

application 

 

0,0003 0,0003 0,0002 0,0002 - 99,999% 

* Chemical composition of initial aluminum is given according to data State Standard RF 1069­2001. 

 

 

CONCLUSION 

1. The deep purification of aluminum of А85 

(99,85%Al) mark is carried out by three-cascade zone 

melting  method. It is shown that the application of 

ultrasonic waves with frequency 20kHz and intensity     

0,4 Vt/cm
2 

allows us to increase on one order the purity 

level of purified aluminum up to level 99,999% of main 

substance.   

2. The method can be used in industrial production 

for obtaining of essentially pure aluminum. 
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IR SPECTRA OF  (Ni, Zn) FERRITE MICROPOWDERS  
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AZ-1143, Baku, H. Javid ave., 131 

 
The results of experimental investigations of reflection spectra in near and far regions of infrared  wavelength range of  

Ni1-xZnxFe2O4 ferrite micropowders with different content of Ni and Zn in them are given. The intensity dependence of IR-spectrum 

of these ferrites on concentration change of cations Fe2+ and Fe3+ in ferrite different compositions is established. The dependence of 

dispersion on ferrite compositions is determined and the presumptive interpretation of observable spectral structures is given.     

 

Keywords: IR spectra, ferrite micropowders  

PACS: 78.55.Am 

 

1. INTRODUCTION 

 

In spite of the fact that Ni-Zn ferrites are well-

known, appeared in former century, they are of big 

scientific interest that is shown in big amount scientific 

publications, among which the investigations of IR and 

Raman spectra take the especial place. In works [1-2], 

devoted to investigations of neutron small-angel 

scattering, Mossbauer effect, EPR micropowder spectra 

and AFM magnetic profiles of thin films of Ni1-xZnxFe2O4 

ferrites with different content of Ni and Zn,  the effects  

connected with not only  two types of B-sublattice 

ordering but additional magnetic ordering and declination 

of sublattice spin collinearity are revealed. To interpret 

these peculiarities it was necessary to study in detail IR 

and Raman spectra. The results of experimental 

investigations of IR spectra of Ni1-xZnxFe2O4 ferrite 

micropowders under consideration are given in present 

work.     

  

2. SAMPLE PREPARATION 

 

All compositions of ferrites are obtained by the way 

of high-temperature synthesis of ultrapure powders of 

ZnO, NiO, Fe2O3 compounds. The synthesized               

Ni1-xZnxFe2O4 compositions are annealed at temperature 

960 and grinded into micropowders with grid sizes about 

20nm. The quality of synthesized compositions of ferrite 

micropowders is controlled by roentgen micropowder 

diffractograms on XRDD8 ADVANCE, Bruker, Germany 

and also by Raman spectra. The roentgen investigation 

results are published in [4]. IR spectra of Ni1-xZnxFe2O4 

ferrites of х=0;0,25;0,4;0,5;0,6;0,75;1,0 compositions are 

studied on infrared Fourier-spectrometer Vertex70 

(Bruker, Germany) with attachment of diffuse reflection 

in vacuum camera in spectral range from 4000сm
-1

 up to 

50сm
-1

, the standard spectral resolution is better than 

0,5cm
-1

 (fig.1-2). The positions of genetically connected 

spectral lines determining the form of main absorption 

maximums are given in table 1. The sample temperature 

in all experimental investigations is equal to 300K.   

The positions of spectral lines from experimental 

works [3,4,5] are also given in table 1.  

By analysis of obtained spectra, it is established that 

their profiles have the complex structure and not only 

shift but the splitting into spectral components in process 

of “x” change are observed.   

3. EXPERIMENTAL RESULTS AND 

 DISCUSSION 

 

It is well known that IR active triply degenerate 

modes of Flu symmetry type should be observed in IR 

spectra of spinel reflection, i.e. oscillations are 

asymmetric ones in respect of inversion center and 

symmetric ones in respect of twofold axis or vertical 

reflection planes (σv). On the other hand, masses of Fe, Ni 

and Zn ions consisting in the composition of investigated 

ferrite significantly exceed the oxygen ion mass. 

Moreover, the oxygen ion oscillations in respect of metal 

heavy ions practically don’t influence on positions of 

heavy ions whereas heavy ion oscillations influence on 

oxygen ion ones. The shift of oxygen ion can take place 

either along the С3 triad axis order or perpendicular to it 

[5]. In first case the 𝐹1𝑢
1  oscillation of                      

𝑀𝑒2+ − 𝑂 − 3𝑀𝑒3+ bond (where 𝑀𝑒2+ is octahedral 

cation and 3𝑀𝑒3+ are three tetrahedral cations) is 

observed. The high-frequency spectral band corresponds 

to this oscillation. In second case, the 𝐹1𝑢
2  oscillation 

of 𝑀𝑒3+ − 𝑂 − 2𝑀𝑒3+ bond, in which only octahedral 

cations take part, is observed. The low-frequency spectral 

band corresponds to this oscillation. The cation 

oscillations 𝐹1𝑢
3  (𝑀𝑒3+ −𝑀𝑒3+) and 𝐹1𝑢

4  (𝑀𝑒2+ −𝑀𝑒2+) 

in respect of each other take part at more low frequencies 

and have the weak intensities. As the frequencies of these 

oscillations is determined by dimensions and ion masses 

then the shift of spectral lines towards to low frequencies  

will be observed at exchange of Fe
2+

on Zn
2+

 or Ni
2+

 

(masses of Zn
2+

 and Ni
2+

 ions are bigger than Fe
2+ 

 mass) 

in tetrahedral and octahedral spinel fragments 

𝐹𝑒2+𝐹𝑒2
3+𝑂4. The three wide bands associated with 

lattice oscillations of Fe-O, Ni-O and Zn-O bonds are 

observed for all ferrite compositions in IR spectrum long-

range region. The obtained frequency values in IR 

spectrum long-range region for micropowders of all 

compositions of Ni1-xZnxFe2O4 ferrites are given in      

table 1. The light lines in tables correspond to spectral 

lines along compositions from NiFe2O4 up to ZnFe2O4: 

604-542сm
-1

; 425-388сm
-1

; 249-241 сm
-1

, which 

according to agreed classification are interpreted as 

oscillations of 𝐹1𝑢
1 ,𝐹1𝑢

2 , 𝐹1𝑢
3  and 𝐹1𝑢

4  symmetry type 

correspondingly. The presence of thin structure in IR 

spectra of investigated compositions and absorption 

maximum positions are established as a result of multiply 

carried out experiments. 
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Fig. 1. IR spectra of Ni1-xZnxFe2O4 ferrites in FIR mode. 

 

 
 

Fig. 2. IR spectra of Ni1-xZnxFe2O4 ferrites in MIR mode, х(Ni)=1;0.75; 0.6;0.5;0.4; 0.25; 0 

 

The absorption bands in frequency region with 

maximums in neighborhood of 430 сm
–1

and 545 сm
–1

 

which present themselves the oscillation combined bands 

of Fe–O valence bonds in octahedral positions with Zn
2+

 

ions in nearest coordination surrounding Fe–O–Zn 

evidence on spinel structure formation, for example in 

ZnFe2O4. The absence or presence of wide intensive 

absorption bands at 3440 сm
–1

and 1630 сm
–1

 shows the 

presence of adsorbed water or OH-groups [6, 7]. This fact 

is confirmed by absorption bands at 823сm
–1

 and 
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1045сm
–1

,
 

which are to deformation oscillations of        

Zn–O–H and Fe–O–H bonds.  

The role of Ni and Zn cation reproportioning in 

different compositions of Ni1-xZnxFe2O4 ferrites in 

formation of their IR spectra is established by 

experimental investigations. As it follows from 

experiments the shift, the appearance of new spectral lines 

and disappearance of “old” ones are observed in IR 

spectra of investigated compositions of Ni1-xZnxFe2O4 

ferrites depending on 𝑁𝑖2+ and 𝑍𝑛2+cation inclusions. 

The dependences of obtained IR spectra of investigated 

Ni1-xZnxFe2O4 compositions are easily interpreted within 

framework of model taking under consideration the 

changes of Fe
3+

[3] and Fe
2+

[8] cation concentrations in 

different ferrite compositions (fig.1). The comparison of 

these data with intensity taken for the example of 

experimental spectra band 425сm
-1

 shows on the fact that 

decrease of Fe
2+

and Fe
3+

contents in ferrite composition 

leads to the decrease of absorption intensity of this band 

in IR spectra. The change of Fe
2+

and Fe
3+

 contents in 

ferrite compositions obviously indicates on the change of 

“jump” electron number and consequently on the change 

of indirect exchange interaction [9]. Thus, the 

interconnection of elementary cell “a” parameter and shift 

of normal oscillation frequency at isomorphous 

substitutions becomes understandable one. The indirect 

exchange interaction value is necessary to take under the 

consideration besides the changes of elementary cell “a” 

parameter in calculations of shift of normal oscillation 

frequency at isomorphous substitutions. As it has to be 

expected, the shift of IR spectra of Ni1-xZnxFe2O4 ferrites 

towards to low frequencies is observed depending on 

𝑁𝑖2+ and 𝑍𝑛2+cation reproportioning. It is established 

that spectral line 604сm
-1

 observed in NiFe2O4 spectrum 

depending on “x” and interpreted as oscillations of 

𝑀𝑒2+ − 𝑂 − 3𝐹𝑒3+ bonds (Me is Ni or Zn ions) related to 

𝐹1𝑢
1  symmetry type shifts to 542сm

-1 
position in ZnFe2O4. 

At detail consideration, it is established that the form of 

considered spectral line has the complex structure. The 

shift and splitting of spectral components forming the 

given line profile is revealed in inclusion process of 

𝑁𝑖2+and 𝑍𝑛2+ ions in ferrite composition (see table 1). 

The profile change in neighborhood and maximums 

themselves from 425сm
-1 

(NiFe2O4) up to 388сm
-1 

(ZnFe2O4) more obviously demonstrates the process of 

substitution of 𝑁𝑖2+ by 𝑍𝑛2+. Earlier this absorption 

maximum (in magnetite) is related to oscillations 

of 𝐹𝑒3+ − 𝑂 − 2𝐹𝑒3+  bond of 𝐹1𝑢
2  symmetry type and 

oscillation frequency change takes place because of 

distance changes between 𝐹𝑒3+  cations. The analogous 

situation obviously should be observed for oscillations of 

𝐹1𝑢
3  𝑎𝑛𝑑 𝐹1𝑢

4  symmetry types influencing on the bonds 

between the same cations. This fact is seen by the 

behavior of spectral line 249 сm
-1 

(NiFe2O4), which shifts 

to the position 206сm
-1 

(ZnFe2O4). The continuous (at the 

decrease of concentration of Ni ions or at the increase of 

concentration of Zn ions) changes of absorption band 

form leading to the appearance of well marked maximum 

at 206 сm
-1

 which corresponds to oscillations of Zn-O 

bond are observed in 200-300сm
-1

 range. The analogous 

absorption maximum is shown in [10-14].  

 

 

Table 1 

 
Phonon frequency Ni1-хZnхFe2O4, cm-1 

 х=0 х=0.25 х=0.4 х=0.5 х=0.6 х=0.75 х=1.0 

𝐹1𝑢
1  604 592 584 578 582 570 - 

 - - - 544 544 550 542 

 533 538 522  535 - - 

 529 528 512 529 525 516 519 

 - 524 508 - 518 506 507 

 - 456 497 454 - 500 471 

 443 442 437 436 - - - 

 432 433  429 430 - - 

𝐹1𝑢
2  425 426 426 424 - 421 426 

 - 403 401 - 403 394 398 

 392 391 389 389 388 391 388 

 - 367 363 356 - 330 332 

𝐹1𝑢
4  349 345 346 343 324 - - 

 306 306 304 300 299 308 313 

 273 275 270 266 284 287 294 

𝐹1𝑢
3  249 247 - 248 236 - 247 

 - 204 204 206 195 206 206 

 169 169 171 173 163 177 183 

 96 93 95 95 128 81 84 

 95 90 89 88 55 77 80 

 - 85 84 83 52 73 76 

 74 76 71 72 43 58 69 
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Fig.3. IR spectra of Fe2O3, NiO and ZnO powders used in synthesis process of Ni1-xZnxFe2O4    ferrites and Ni0.5Zn0.5Fe2O4 

composition chosen for example. 

 

 

The analysis of IR spectra of investigated 

compositions of Ni1-xZnxFe2O4 ferrites in 4000сm
-1

 - 

500сm
-1

 range shows that the information about IR 

spectra of ZnO, NiO and Fe2O3 components is necessary 

for interpretation of spectral peculiarities (see fig.3). As it 

was shown earlier Ni1-xZnxFe2O4 ferrites don’t solve the 

excess quantity of NiO and ZnO. The excess quantity of 

Fe2O3 leads to formation of solid solution consisting of 

magnetite Fe3O4. By other hand for achievement of stable 

state in spinel structures the different forms of disorder 

appear in the form of point defects and vacancies (for 

example ZnO and NiO), the stability and concentration of 

which practically don’t change until to thermodynamic 

equilibrium doesn’t disturb. The concentration of these 

defects is enough to reveal them in IR spectra.  

The weakly intense absorption band in (3627-3500) 

сm
-1

 range corresponds to the contribution in spectrum 

from OH ions and oxygen. The spectral band (2852-2829) 

сm
-1

 corresponds to the contribution from 𝑁𝑖2+ and 𝑍𝑛2+ 

ions in spectrum. The exchange process can be divided on 

stages: 1) composition change from NiFe2O4 up to 

Ni0.5Zn0.5Fe2O4  (the line 2852сm
-1 

shifts to 2829сm
-1

 

decreasing in intensity; 2) composition change from 

Ni0.5Zn0.5Fe2O4 up to ZnFe2O4  spectral line shifts to 

2850сm
-1

 , earlier in ZnFe2O4 this line haven’t been 

registered). Note that this line is the doublet, the second 

component of which has very weak intensity. The 

analogous line 2904сm
-1

 is observed in NiO. The spectral 

structure observed in ZnO (1577сm
-1

 and 1409сm
-1

) is 

revealed in spectral band (1550-1400)сm
-1

 in 

compositions of Ni1-xZnxFe2O4 ferrites gradually appear in 

exchange process of 𝑁𝑖2+ by 𝑍𝑛2+. Note that the spectral 

lines 1586сm
-1

 and 1585сm
-1

 are always observed in IR 

spectra of 𝑁𝑖2+and 𝐹𝑒2+ ions correspondingly.  

 

4. CONCLUSION 

 

The reflection spectra of Ni1-xZnxFe2O4 (x=0, 0.25, 

0.4, 0.5, 0.6, 0.75, 1.0) ferrite micro-powders in range 

from 4000 cm
-1

 up to 50cm
-1 

are investigated. The phonon 

frequencies for each ferrite composition and their changes 

with “x” change are established. It is shown that 

observable changes in reflection spectra of these ferrites 

connect with reproportioning of Ni
2+

/Zn
2+

 ion 

concentration. 
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High quality Multi Wall Carbon nanotubes (MWCNTs) have been synthesized in Aerosol –CVD reactor by the optimization of 

the synthesis process.  

Scanning and Transmission electron microscopes have been used for characterization of CNTs, grown under different synthesis 

conditions (different values of reaction temperature and ferrocene/cyclohexane relation).  

It was established that the reaction temperature between 840-9500C and 15-18 mg/ml ferrocene/cyclohexane relation are 

optimal conditions for the synthesis of long (up to 650 µm) MWCNTs, which diameters range between 10 and 85 nm. 

 

Keywords: CNTs, Aerosol-CVD, SEM, TEM, ferrocene. 

PACS:  61.48.De, 81.15.Gh, 81.20.Ka, 68.37.Hk, 68.37.Og 

 

1.      INTRODUCTION 

 

The outstanding properties of carbon nanotubes 

(CNTs) as a functional material for electronic devices, 

computation, power generation, catalysis, medicine and 

drug delivery causes a great interest to understand what 

factors control the nanotube sizes, number of walls, the 

helicity and the defectiveness of the tubular structure 

during synthesis process; this is due to the fact that 

different structure of the tubes may result in great changes 

in their mechanical and electrical properties [1-4]. In 

general, CNTs are synthesized by arc discharge, laser 

ablation, chemical vapor deposition (CVD) and spray 

pyrolysis [5-8]. Although first two methods from above 

mentioned can produce high quality SWNTs, the 

available quantity from both arc discharge and laser 

ablation is limited. The other problem is to develop cost 

effective, eco- friendly method synthesis of high quality 

CNTs with good parameters and large scale.  

In this paper we report about the characterization of 

CNTs, synthesized by Aerosol assisted Chemical Vapor 

Deposition (A-CVD) method, using various temperatures 

and catalyst concentration. Have been analyzed the 

influence of different technological conditions to 

structural and physical properties of the synthesized 

CNTs.  

2.       EXPERIMENT  

To synthesize CNTs have been used horizontal 

quartz reactor (2 m length quarts tube) covered by 

movable electric furnace with 35 cm long and 22 cm in 

diameter. This technology is based on the injection of the 

solution in the reactor as an aerosol and its decomposition 

under high temperature (830-1000
0
C). Cyclohexane 

(C6H12) and ferrocene (Fe(C5H5)2) were used as chemical 

raw material and catalyst, respectively. The solution with 

different ferrocene/cyclohexane relation was transformed 

into an aerosol by the ultrasonic transducer (frequency -

800 kHz). The aerosol was injected to the quarts reactor, 

which equipped with high temperature movable furnace 

by using transport gas (Ar/H2 mixture). Each sample of 

the CNTs with different synthesis condition has been 

analyzed. Scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM) have been used 

to observe morphology, and characterize geometric 

parameters (diameter, length, number of shells) of the 

obtained CNTs and Fe position in the CNT.  

3.      RESULTS AND DISCUSSION 

To find optimal technological condition was 

changed some of parameters of the reaction: 

decomposition temperature, Fe content in the solution, 

gas flows, et.al. The temperature dependence was 

determined in the range of 830-1000
0
C. Lower synthesis 

temperatures result to low carbon nanotube yield and 

SEM observations show that the increasing temperature 

led to formation of other carbon structure or pyrolytic 

carbon, which relative weight to CNTs is increasing in 

high temperatures (higher than 950
0
C). At 1000

0
C on 

quarts tube was deposited other carbon structures or 

pyrolytic carbon. Fig. 1 shows SEM pictures of carbon 

structures, grown at 840 and 1000
0
C for comparison. It is 

observed that, increasing of reaction temperature near 

limit led to formation of more straight, smooth and longer 

CNTs, compared with low synthesis temperature (at 

830
0
C ~90 µm, 950

0
C ~630 µm  (see fig. 2). 

Most of the CVD techniques require presence of 

metallic catalyst during the growth of CNTs, because it 

may affect not only successful growth, and also 

morphology, number of walls of the grown nanotubes.  

Several metals used as catalyst, but shown that among of 

them Fe is more suitable for crystallization of the 

nanotubes and same time it is interesting for application 

point of view [9-11]. 

Has been varied the different volume of Fe catalyst 

in cyclohexane solvent in order to understand how 

influence the catalyst quantity to the end product. If 

ferrocene is absent in the cyclohexane solvent is not 
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observed any deposition on quarts surface (was not grown 

CNTs). The volume of deposited product is increased by 

increasing ferrocene quantity in the solution. This process 

is limited, because more than 20 mq/ml in 

ferrosene/cyclohexane relation lead to saturation of 

solvent.    

   

 
 

 

Fig.1. SEM pictures of CNTs grown by Aerosol CVD method: left – growth temperature -840
0
C; right- growth 

temperature -1000
0
C 

 

 
 

 

Fig.2. CNTs, grown at 830
0
C (left) and 950

0
C (right) 

 

It was observed that relative concentration of other 

carbon structures or pyrolytic carbon to CNTs is 

increasing with increasing Fe concentration in the 

solution. It can be assumed that due to increasing the 

numbers of the catalyst centers, which were involved in 

growth of carbon nanotubes, after decomposition by 

temperature the carbon atoms were seeking after new 

catalytic centers instead of continuing the growth of 

CNTs, which has already begun. This process is chaotic. 

TEM observations of CNTs have provided with more 

detailed information about diameter, number of walls, 

structure and position of the catalyst in the CNTs. The 

number of the walls increases with increasing CNT 

diameter. The C layers are nicely visible for all CNTs 

(fig. 3). 

 

Fig.3. a) CTEM image of a CNT with diameter D ≅ 45 nm. b) HR-TEM image taken along the CNT. c) High       

magnification of the squared area of b). 
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Fig.4. HR-TEM results of CNTs. b) is the HR-TEM image of the dash-circled area of a) with its magnification in c). 

 

A HR-TEM study of a Fe-rich area of the CNTs is 

presented in fig. 4. The fringes of the lattice planes have a 

spacing of 0.206 nm which pretty agrees with the spacing 

of the (111) planes of Fe bcc. The FFT (fast Fourier 

transform), i.e. electron diffraction pattern, from the Fe-

rich area and surrounding matrix (fig. 4d) confirms that 

conclusion. In fig.4d the spots 1 are due to the (111) 

planes of Fe bcc, whilst spots 2 give dhkl = 0.340 nm that 

pretty agrees with the spacing of the (002) planes of 

graphite (d002= 0.3395 nm, according to the WebEMAPS) 

For the smaller thicknesses, only some 

discontinuous segments of C layers are visible (fig. 5 

right). This anyway may be sufficient to confirm that also 

the small NTs have a MW (6-8 layers) structure although 

quite irregular and discontinuous.  

The inner channel also increases from ~2.2 to        

~15 nm for D increasing from 11 to 60 nm but then drops 

to ~6 nm for D=85 nm (fig. 6). 

TEM results show that MWCNTs, which is 

observed, are partially filled by pure Fe and it was also 

found at different positions along the CNT, not only at the 

CNT tip (fig.7). This has been concluded by applying 

several operation modes of the TEM: X-EDS, EF-TEM, 

HAADF, HR-TEM.  

 

Fig.5. Left: HR-TEM image of a CNT with diameter D~13 nm. Right: high magnification of the squared area.  

 

 
 

Fig.6. Thickness (t) of the inner channel as a function of the NT diameter (D). The black dots are the experimental data    

           while the blue parabolic curve is a tentative fitting. 
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Fig.7. a) CTEM image of CNT; b) Corresponding HAADF image.  

 

4.   CONCLUSION 

 

It was grown long (up to 650 µm) multiwall carbon 

nanotubes, which diameters between 10 and 85 nm by 

optimization of synthesis process in the Aerosol-CVD 

system. 

It was established that the reaction temperature 

between 840-950
0
C and 15-18 mg/ml 

ferrocene/cyclohexane relation are optimal condition for 

synthesizing of high quality CNTs. 

TEM observations of grown CNTs have provided 

with more detailed information about diameter, number of 

walls, structure and position of the catalyst in the CNTs.  

The number of the walls increases with increasing CNT 

diameter up to 85 nm. The distance between the CNT 

walls  is calculated 0.340 nm, corresponding to graphite 

(002). For the smaller thicknesses (~10-15 nm) only some 

discontinuous segments of CNT walls are visible. This 

anyway may be sufficient to confirm that also the small 

CNTs have a MW (6-8 layers) structure although quite 

irregular and discontinuous.  

Has been defined that Fe nanoparticles were situated 

not only in the tip of the tubes, and also along the length 

of the nanotube (in the inner channel of the CNTs)  and 

no other impurities or composites are present in the tubes 

or around of them. 
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For TlInS2 64-atom supercell, in LDA approximation of Density Functional Theory taking into account Hubbard+U 

corrections, from Fermi energy dependence of the Tl, In, S neutral and charged vacancy formation energies the transition levels were 

defined: for S-rich condition of S vacancies q=0 charge state transfers to q=-2 charge state, in 1.5 eV; for rich condition of Tl and In 

vacancies q=-1 charge state transfers to q=-2 charge state, in 0.5 eV and 1.75eV, respectively.  

Considering that the calculated value of the energy gap obtained with LDA and LDA+U schemes (respectively 1.25 eV and 

1.47 eV) are lower than experimental one (2.2 eV)  and accepting the correction to agree on experimental value it was found that in 

arbitrary positions of the Fermi level within the band gap no transitions occur from the one charge state to another and as a result S 

vacancy remains in a neutral q=0 state, and Tl and In vacancies in a q=-1 charge state. 

 

Keywords: psevdopotential, charged and neutral vacancy, defect, formation energy, valence band maximum. 
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INTRODUCTION 

 

The III-III-VI2 family of crystals exhibit quasi 

low-dimensionality in the form of layered and chain 

structures and has become increasingly attractive due 

to their interesting structural properties and potential 

optoelectronic applications [1]. Like all layered 

TlMeX2 (where Me=In or Ga and X=S or Se) TlInS2 

has C2/c space group symmetry at room temperature 

[2]. The fundamental structural unit of a layer is the 

In4S6 (Ga4S6) adamantane-like units linked together by 

bridging S atoms. The Tl atoms are in trigonal 

prismatic voids resulting from the combination of the 

In4S6 (Ga4S6) polyhedra into a layer [3]. The cell 

structure of TlInS2 shown in fig.1. In the crystal 

structure of TlInS2, the Van der Waals interaction 

favors the formation of numerous, both point and 

extended, defects embedded predominantly in the 

interlayer space of the crystal. The effect of impurities 

on the phase transitions in the ferroelectric 

semiconductors TlInS2 have been studied [4]. 
 

 
 

Fig.1. Cell structure of TlInS2. 

 

 

In this work, we aimed to examine the dependence 

of the defect formation energies (DFE) on the chemical 

potentials and Fermi-level position for the various charge 

states of Tl, In, S vacancy of the TlInS2 segnetoelectric 

semiconductor supercell containing 64 atoms and to 

determine corresponds transition levels on this basis. Our 

calculations were performed for neutral and charged 

vacancy defect, by Local Density Approximation (LDA) 

[5] and implementing the LDA+U method using the 

Atomistix ToolKit software program (ATK, 

http://quantumwise.com/) [6]. The electron-ion 

interactions were taken into account through 

pseudopotentials of the Fritz Haber Institute (FHI). The 

number of the electrons treated as valence electrons was 3 

for Tl (6s
2
6p

1
), 3 for In (5s

2
5p

1
) and 6 for S (3s

2
3p

4
). The 

Perdew-Burke-Erenzhorf (PBE) exchange-correlation 

functional and Double Zeta Polarized basis sets were used 

in our calculations. The kinetic cut-off energy was 150 

Ry. To determine the coordinates of the atoms and the 

lattice parameters of TlInS2 primitive cell structure was 

relaxed and optimized with force and stress tolerances of 

0.0001 eV/Å and 0.0001 eV/Å
3
, respectively. The 

supercells containing vacancies were relaxed with force 

tolerance of 0.05 eV/Å. 

The calculated band structures with LDA using 

HGH psevdopotential in Quantum Wise Atomistix 

ToolKit program and SGGA [7] using ultrasoft 

psevdopotential in Quantum Espresso [8] software 

programs show that bulk TlInS2 is a direct band gap 

semiconductor with the valence band top and the 

conduction band bottom located at the center of the 

Brullouin zone and Eg=1.25 eV [9]. By LDA+U (the 

Hubbard parameter U we use for S 3p state U=3eV) 

scheme we defined that Eg=1.47 eV. The calculated 

values of the energy gap are lower than experimental one 

(2.35 eV) [10]. 
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RESULTS AND DİSCUSSİON 

 

The formation energy of a point defect is not a 

constant but depends on the growth or annealing 

conditions [11]. In the case of charged vacancy, the 

formation energy further depends on the Fermi level (EF), 

which is the energy of the electron reservoir, i.e. the 

electron chemical potential. We calculated formation 

energy by: 

 

𝐸𝑓 𝑉𝑎
𝑞 = 𝐸𝑡𝑜𝑡   𝑉𝑎

𝑞 − 𝐸𝑡𝑜𝑡  𝑇𝑙𝐼𝑛𝑆2 + 𝜇𝑎 + 𝑞(𝐸𝐹 + 𝐸𝑉𝐵𝑀 )                         (1) 

 
where 𝐸𝑡𝑜𝑡   𝑉𝑎

𝑞
  is the total energy of a supercell 

containing the vacancy of atom (a=Tl, In, S) in the charge 

state q, 𝐸𝑡𝑜𝑡  𝑇𝑙𝐼𝑛𝑆2  is the total energy of TlInS2 perfect 

crystal in the same supercell and 𝜇𝑎  is the a-atoms 

chemical potential. First we determine the chemical 

potentials of atoms as 𝐸𝑡𝑜𝑡  energy per one atom. For this 

purpose we used cell and structure parameters of Tl, In 

and S taken from the literature [6] and optimized them. 

Another important physical parameter for the calculation 

of the defect formation energy is the position of the 

valence band maximum (VBM), which corresponds to the 

reference energy level for the electron chemical potential. 

VBM is determined by adding the perfect supercell VBM 

with the Fermi level [13]. 

DFE of charged vacancies calculated in the case of 

rich atom conditions. Rich conditions of atoms forming 

the vacancy given by the thermodynamic stability 

condition: 

 

             𝐸𝑡𝑜𝑡  𝑇𝑙𝐼𝑛𝑆2 −  𝐸𝑡𝑜𝑡  𝑇𝑙 + 𝐸𝑡𝑜𝑡  𝐼𝑛 + 2𝐸𝑡𝑜𝑡  𝑆  = 𝐻𝑓 𝑇𝑙𝐼𝑛𝑆2 ,                 (2) 

 

 

where 𝐻𝑓 𝑇𝑙𝐼𝑛𝑆2  is the enthalpy of formation of bulk 

TlInS2 negative for a stable compound. The calculated 

enthalpy of formation of TlInS2 is 𝐻𝑓 𝑇𝑙𝐼𝑛𝑆2 =−2.983 

eV. Adding the value of enthalpy to chemical potential of 

atom forming the vacancy we gain the rich condition of 

this atom respectively [14]. So rich conditions for each of 

the three atoms can be calculated as follows:   

      𝜇𝑇𝑙,𝐼𝑛 ,𝑆
𝑚𝑖𝑛 = 𝐸𝑡𝑜𝑡  𝑇𝑙, 𝐼𝑛, 𝑆 + 𝐻𝑓(𝑇𝑙𝐼𝑛𝑆2)     (3) 

 

In our calculation transition level 𝜀 𝑞 𝑞′   is defined 

as the Fermi-level position for which the formation 

energies of charge states q and q' are equal. 𝜀 𝑞 𝑞′   can 

be obtained from 

 

                    𝜀 𝑞 𝑞′  = [𝐸𝑓 𝑉𝑞 ; 𝐸𝐹 = 0 − 𝐸𝑓 𝑉𝑞 ′ ; 𝐸𝐹 = 0 ] ∕ (𝑞′ − 𝑞) ,                        (4) 

 
where 𝐸𝑓 𝑉𝑞 ; 𝐸𝐹 = 0  is the formation energy of the 

defect V in the charge state q when the Fermi level is at 

the valence band maximum (𝐸𝐹 = 0). - 

The experimental significance of this transition level 

is that for Fermi-level positions below 𝜀 𝑞 𝑞′  , charge 

state q is stable, while for Fermi-level positions above 

𝜀 𝑞 𝑞′  , charge state q' is stable [12]. In fig. 2 (In-rich 

limit LDA) the slope of the line changes from -1 to -2 at 

the intersection of lines with q=-1 and q=-2. For In-rich 

condition the energy of intersection will be denoted by 

𝜀(− 1 −2 ). The q=-1 state is more stable when           

𝐸𝐹 < 𝜀(− 1 −2 ), and the q=-2 is favorable when        

𝐸𝐹 > 𝜀(− 1 −2 ). The calculated transition energy level 

for In is: E=1.25 eV. In fig.2 (S-rich limit LDA) energy of 

intersection will be denoted by 𝜀(0 −2 ) for S rich 

condition, where 𝐸𝐹 < 𝜀(0 −2 ), corresponds to more 

stable q=0 state and the q=-2 is favorable when          

 𝐸𝐹 > 𝜀(0 −2 ). Transition energy level for S is: E=1.5 eV.     

Tl-rich limit LDA (fig.2) describe the line changes from    

-1 to -2 at the intersection of lines with q=-1 and q=-2 for 

Tl vacancy. In this case the q=-1 state is more stable 

when 𝐸𝐹 < 𝜀(− 1 −2 ), and the q=-2 is favorable 

when 𝐸𝐹 > 𝜀(− 1 −2 ). Transition energy level for Tl is 

E=1.5 eV.  

The band gap obtained from LDA and the LDA + U 

schemes have been small compared with experimental 

results. Although the LDA+U approach only corrects part 

of the band-gap error, it provides us with a basis for 

obtaining a full band-gap correction through a physically 

justified extrapolation scheme [12]. Our approach takes 

advantage of the fact that the extent to which transition 

levels 𝜀 𝑞 𝑞′   change in going from LDA to LDA+U 

reflects their relative valence-band and conduction band 

character. The procedure is to perform calculations using 

the LDA, on the one hand, and the LDA+U, on the other 

hand, and then extrapolate to the experimental gap: 

 

          𝜀 𝑞 𝑞′  = (𝜀(𝑞/𝑞′)
𝐿𝐷𝐴+𝑈

 − (𝜀 (𝑞/𝑞′)
𝐿𝐷𝐴

)/(𝐸𝑔
𝐿𝐷𝐴+𝑈 − 𝐸𝑔

𝐿𝐷𝐴
) ∗ (𝐸𝑔

𝑒𝑥𝑝 − 𝐸𝑔
𝐿𝐷𝐴+𝑈) + 𝜀 (𝑞/𝑞′)

𝐿𝐷𝐴+𝑈
            (4) 

 
Here, 𝐸𝑔𝐿𝐷𝐴  and 𝐸𝑔𝐿𝐷𝐴+𝑈  are the band gaps given 

by the LDA and LDA+U approximations and 𝐸𝑔𝑒𝑥𝑝  is 

the experimental gap. As a result, Tl(-1/-2)=2.26eV,      

In(-1/-2)=0.74eV, S(0/-2)=2.26eV from obtaining value it 

was obvious that in arbitrary positions of the Fermi level 

within the band gap no transitions occur from the one 

charge state to another. Thus S vacancy remains in a 

neutral q=0 state, and Tl and In vacancies in a q=-1 

charge state. 
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Fig. 2. Formation energies as a function of Fermi-level position for neutral and charged vacancy in TlInS2. 

                            Results for In-rich, S-rich and Tl-rich conditions with LDA and LDA+U are shown. 

 

CONCLUSİON 

 

Dependence of formation energy on charged and 

neutral states as a function of the Fermi level for TlInS2 

crystal calculated using the LDA and the LDA + U 

schemes. Considering that the calculated value of the 

band gap (1.25 eV with LDA, LDA + U 1.47 eV) are 

lower than the experimental (2.2 eV), and extrapolating 

the calculated dependence to experimental value, it was 

found that in any position of the Fermi level within the 

band gap S vacancy remains in the neutral charge state      

q = 0, and Tl, In vacancies in the q = -1 charge state. 
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INVESTIGATION OF PHASE TRANSITION IN Cu4Te1.5Se0.5 SOLID SOLUTION BY 

HIGH-TEMPERATURE ROENTGENOGRAPHY METHOD 
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The solid solution of Cu4Te1.5Se0.5 is synthesized. By roentgenographic method it is established that Cu4Te1.5Se0.5 samples 

crystallize in trigonal structure with lattice periods in hexagonal establishment: аh=8,2319(11) Å, сh=21,4145(23) Å, V=1089,811(12) 

Å3, sp.gr. Р3m1, Z=22, x=7,33 gr/сm3. By comparative roentgen-phase analysis of temperature diffraction data it is established that 

trigonal phase of Cu4Te1.5Se0.5  at room temperature transits at Т=7503К into two-phase system consisting of hexagonal phase of 

Cu2Te0.5Se0.5 composition with periods а=4,231 Å, с=7,223Å; sp.gr. P63/mmc and cubic phase of Cu2Te composition with а =   

6,049 Å periods. It is shown that near T=800K5К the two-phase system transits into unique cubic phase with periods а=6.061 Å. 

     

Keywords: crystals, structure, phase, phase transitions, lattice parameters. 

PACS: 77.22.Ch, 77.80.Bh, 77.80.Dj, 78.20.Fm 

  

INTRODUCTION 
 

It is known that the development of electron 

technique, energetic and radio electronics stimulates the 

search and investigation of physicochemical properties of 

perspective materials. In this relation the thermomagnetic 

and thermoelectric materials with small lattice thermal 

conductivity and high mobility of charge carriers has the 

wide region of application in the capacity of 

thermoelectric transformers [1-3]. Ag, Cu chalcogenides 

and based on them different solid solutions are to them. It 

is obvious that for effective use of these materials it is 

necessary to have experimental data on influence of 

external factors on structure and structural changes. Note 

that for above mentioned chalcogenides the presence of 

polymorphous transformations under temperature 

influence is the one of character properties [4-6]. The 

results of experimental investigations of synthesis and 

structural-phase transitions of Cu4Te1.5Se0.5 in temperature 

interval 360-1250K are given in present work. Note that 

all roentgen-diffraction experiments are carried out on 

powder diffractometer "D8 ADVANCE Bruker 

(Germany) in regime: 40кV, 40mА, 05

280


, CuK - 

radiation, =1.5406Å. The temperature investigations are 

carried out in НТК16 camera in vacuum 1.3 torr. The 

heating rate is 2

/min.    

     

EXPERIMENTAL PART 
 

Synthesis. The samples of Cu4Te1.5Se0.5 solid 

solution are synthesized by the melting of initial elements 

Cu, Te, Se having the purity not less 99.998 in vacuum-

processed quartz ampoule 10
-2

 Pa in one-zone furnace. 

The ampoule of length 20 cm with substance (5gr) is 

gradually put into furnace with temperature 1200K. After 

that the furnace is closed and ampoule is kept at this 

temperature during one hour. Further, the temperature 

into furnace is slowly decreased up to 750K and ampoule 

with substance is kept during 5 days for homogenization.       

The investigation of phase transformations. For 

establishment of possible structural transformations in 

Cu4Te1.5Se0.5 sample one can determine the 

crystallographic parameters of low-temperature phase. 
 

                                                               Table 1. 
 

Roentgen-diffraction data for Cu4Te1.50Se0.50 at 300K 

 

 

№ 

 

2 

 

 

dэкс 

 

I/I0 

 

hkl 

1 12.398 7.13387 22.2 100 

2 21.558 4.11874 3.2 110 

3 24.943 3.56694 100 200, 006 

4 26.372 3.37680 3 202 

5 28.272 3.15405 14.1 203 

6 29.237 3.05213 7.6 007 

7 33.199 2.69635 13.7 008 

8 35.831 2.50414 12.4 206 

9 36.616 2.45222 8.5 213 

10 40.172 2.24298 4.7 207 

11 42.054 2.14684 20 00.10 

12 42.887 2.10704 33 208 

13 43.931 2.05937 81.7 222 

14 45.824 1.97858 77.6 223 

15 47.735 1.90375 3.5 224 

16 51.178 1.78347 32.9 00.12 

17 51.968 1.75820 2.3 226 

18 52.943 1.72808 1.2 402 

19 53.067 1.72435 3.6 403 

20 53.645 1.70712 1.1 404 

21 55.917 1.64301 2.7 00.13 

22 58.478 1.57703 4.7 406 

23 60.631 1.52607  00.14 

24 63.072 1.47276 5.5 408 

25 65.135 1.43100 4.9 00.15 

26 65.352 1.42677 10.61 500 

27 66.031 1.41374 1 409 

28 66.875 1.39793 4.4 503 

29 66.982 1.39596 2.6 501 

30 68.047 1.37668 8.3 420 

31 68.26 1.37291 1.6 421 

32 69.691 1.34817 5.8 423 

33 70.96 1.32714 3.7 00.16 
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To this purpose the small powder from synthesized 

sample is prepared and made the diffractograms in 

vacuum. On the base of the calculative analysis of 

obtained diffracted data with the help of “TOPAS” 

program is determined that synthesized sample 

crystallizes in hexagonal lattice with parameters 

аh=8.2319Å, сh=21,4145, V=1089,811Å, sp.gr P31с, Z=4, 

x=8.11gr/сm
3 

at 300К. The diffractogram of 

Cu4Te1.5Se0.5 phase at room temperature is shown in 

fig.1a, and calculated crystallographic data 2, İ, d, 

reflextion indexes (hkl) are given in table 1.The high-

temperature investigations are carried out after obtaining 

of above mentioned main crystallographic parameters of 

phase Cu4Te1.5Se0.5 at room temperature. To this purpose 

the necessary diffractometric photos for different 

temperatures with step 50K are obtained. The sample is 

kept in each temperature point of photoradiography at the 

given temperature during 25 minutes for temperature 

stabilization in whole camera volume with investigated 

sample. Further, the comparative analysis of obtained 

temperature diffractograms is carried out.   

The carried comparative analysis shows that in 

temperature interval 300Т1250K the essential 

diffraction changes corresponding to possible structural 

transitions take place near temperatures Т=770К and 

Т=850К. In other words, the trigonal -phase up to 

temperature 750K keeps own structure.  

Note that the treatment of obtained diffraction 

experiments shows that the structural change process 

begins as a result of gradually temperature increase in 

trigonal structure of -phase of Cu4Te1.5Se0.5 at Т723К.  

 

 
Fig.1. Cu4Te1.5Se0.5  diffractograms at different temperatures: 1-300К, 2-770К, 3-900К . 

 

 

 

The diffractogram “b” fig.1 shows that the process 

of structural transformation near T=770K is seemed to be 

finished as at given temperature almost all reflections of 

-phase disappear, but the new system of reflections 

appears, on the base of which one can propose that the 

structural phase transformations takes place. 

That’s why for definition of equilibrium temperature 

of the given transition we begin to observe the change of 

the positions of diffraction reflections by decrease of 

heating step. To this purpose we observe for reflection 

position changes beginning from T=725K in each 10K. It 

is observed that at T=755K almost all diffraction peaks of 

-phase disappear and we obtain the observable 

diffractograms at T-770K as a result of observation for 

process of reflection position changes. The process 

temperature decrease from 755K up to 745K with step 5K 

shows that the system returns to previous structure, i.e. to 

-phase at Т=745К. Thus, it is established that transition 

temperature of low-temperature -phase in new phase is 

7503К. 

In the next investigation stage one should define the 

crystallographic parameters and lattice symmetry 

obtained by phase transformation of room temperature 

trigonal -phase Cu4Te1.5Se0.5. 

Note that multiple attempts of lattice constant 

obtaining of investigated substance from diffractogram 

found at temperature 750K using the structural program 

TOPAS doesn’t give us the expected results. That’s why 

we suppose that obserable diffraction change at Т=770К 

isn’t the phase transformation but sample decomposition 

under temperature influence. The fact of diffraction 

change higher than T=800K contradicts to above 

mentioned version. As it is seen from “c” diffractogram of 

fig.1, the sample diffraction picture at the given 

temperature is simpler than one obtained at T=770K. 

Moreover, the comparison of these two diffractograms 

shows that all peaks observable on diffractogram Т=850 

К is the exact repeating of part of reflections taking place 

on diffractograms at T=770K, namely in interval Т=750-

850 К the investigated substance is in mixture state of two 

lattices differentiating by structure (see table 2-3).       
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The treatment of diffraction data obtained at 

T=850K using TOPAS program shows that sample at this 

temperature is to cubic phase with lattice periods 6,061Å, 

V=223.3Å
3
, Z=4, sp.gr.Pa-3. Taking off the list the two-

phase diffraction data of the cubic phase reflections the 

rest reflections of diffractogram at T=770K are indentified 

by TOPAS program. The process of reflection indication 

shows that second phase crystallizes in hexagonal 

syngony with periods: а=4,231 Å, с=7,223 Å, 

V=112,0527, sp.gr P63/mmc, Z=2. This is the structure by          

-Cu2S type. We suppose that investigated sample 

desintegrates in two equal parts at T=770K by 

Cu4Te1.5Se0.5Cu2Te+Cu2(SeTe)0.5 reaction. Near 

T=800K both these phases joining with each other 

transforms into one unique cubic phase which is above 

mentioned. 

 
                                                                           Таble 2.  

Roentgen-diffraction data for Cu4Te1.50Se0.50 at 773K. 

 
 

№ 

 

2 

 

 

dэкс 

 

I/I0 

 

hkl 

1 24.28 3.6633 24 1 0 0 

2 24.64 3.6017 20 0 0 2 

3 25.48 3.4929 80 1 1 1 

4 27.28 3.2664 20 1 0 1 

5 29.51 3.0251 14 2 0 0 

6 36.35 2.4603 8 2 1 1 

7 42.28 2.1395 100 2 2 0 

8 42.72 2.1150 14 1 1 0 

9 44.91 2.0178 10 1 0 3 

10 49.96 1.8267 27 3 1 1 

11 52.34 1.7488 2 2 2 2 

12 61.23 1.5174 3 4 0 0 

13 64.42 1.3879 3 3 3 1 

14 73.15 1.2925 5 2 1 2 

15 77.18 1.2386 5 4 2 2 

 
 is Hexagonal phase а=4,231 Å , с=7,223 Å .P63/mmc 

 is Cubic phase К а=6,061Å, V=223.3Å3, Z=4, sp.gr.Pa-3. 

       
                                                                            Таble 3.   

Roentgen-diffraction data for Cu4Te1.50Se0.50 at 900K. 

 
 

№ 

 

2 

 

 

dэкс 

 

I/I0 

 

hkl 

1 25.471 3.4951 100 1 1 1 

2 29.445 3.0261 14 2 0 0 

3 36.355 2.4711 8 2 1 1 

4 42.21 2.1431 70 2 2 0 

5 49.545 1.8341 28 3 1 1 

 

In conclusion note that the different low-temperature 

structures form in Cu4Se1-xTex(x=0.25; 0,50; 0,75) solid 

solutions in dependence on atom processes Se/Te [7] and 

therefore, their structural transitions occur on different 

scheme. For example, the trigonal -phase with 

Cu4Se1.5Te0.5 periods: аh=4,162Å, сh=20.660Å in 

temperature interval 300-1250К has the only one phase 

transition. At Т=558К -phase transits into cubic 

structure with period а=5,899Å 8. For solid solutions of 

Cu4SeTe and Cu4Te1.5Se0.5 compositions the trigonal 

structure with lattice periods аh=4,1880Å, сh=41,8531Å 

9 and аh=8,2319Å, сh=21,4145Å10 correspondingly is 

established. These phases aren’t isostructural ones. Their 

structures differ from each other. The first structure is the 

structure polytype form of NaCu6Se4 type structure [11] 

and second phase is ordered structure of Cu1,75Te type 

[12]. The processes of the structural transformation are 

also different for them. In Cu4SeTe and Cu4Se0.5Te1.5 in 

temperature interval Т=3001250K the phase 

transformation process is accompanied by composition 

desintegration. For Cu4SeTe at Т=573К the sample 

decomposes in Cu2Se0,5Te0.5 having  structure of Novotny 

phase type [13] with space group P6/mmm and Cu2Te 

having cubic structure. The next transition corresponds to 

temperature Т=673К. At this temperature the situation  is 

similar as one at T=573K. The two-phase state keeps but 

hexagonal phase of Cu2Se0,5Te0.5 composition transits into 

to structure with sp.gr. P63/mmс of -Cu2S type 14. The 

further heating at T=735K shows that these both phases 

transit into unique cubic phase with period а=6,05Å. 

As it is above mentioned the sample of composition 

decomposes in two phases at T750К. Moreover, the 

process is identical with the one at T=673K observed for 

Cu4S0.5Te0.5. In given case the two-phase state higher 

T=800K transits into unique cubic phase а=6,06Å.  

       

 CONCLUSION      

          

1. The solid solution of Cu4Te1.5Se0.5 composition is 

synthesized and it is defined by roentgenophase analysis 

that it crystallizes in trigonal syngony with lattice periods 

аh=8,2319(11) Å, сh=21,4145(23) Å, V=1089,811(12) Å
3
, 

sp.gr. Р3m1, Z=22, x=7,33 gr/сm
3
.   

2. By high-temperature roentgen-diffraction 

method it is established that in 300Т1250К temperature 

interval the substance at 7505К decomposes in 

hexagonal and cubic phases of Cu2Se0.5Te0.5 and Cu2Te 

compositions with lattice periods аh=4,231 Å, сh=7,223 Å 

and а=6,049 Å correspondingly.     

         3.  It is observed that in further heating the two-

phase system higher 850K transits into unique cubic 

phase.
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It is theoretically shown that a non-stable thermorecombination wave propagates in semiconductors with the singly and doubly 

negatively charged impurity centers in the presence of constant electric field and constant temperature gradient. The frequency and 

increment of the thermorecombination wave are calculated. An analytic formula for the constant external electric field at which the 

wave instability begins is found.  
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INTRODUCTION 

 

In paper [1], it is shown that hydrodynamic motion 

in non-equilibrium plasma, in which there is a 

temperature gradient 


, results in the magnetic field 

excitation. In that paper, it is found that the plasma with a 

temperature gradient 


 has oscillatory characteristics 

noticeably different from normal plasma. In the absence 

of external magnetic field and hydrodynamic motion in 

the plasma, transverse "thermo-magnetic" waves are 

possible, in which oscillations of the magnetic field alone 

take place. If there is a constant external magnetic field 

0


, then the wave vector of the thermo-magnetic wave 

must be perpendicular to it and lie in the (
0


, 


) plane.  

In paper [2], conditions for the occurrence of 

thermo-magnetic wave instability in solid plasma with a 

single type of charge carriers (electrons) have been 

analyzed theoretically.     

In paper [3-5], the instability conditions in the 

isotropic and anisotropic solid-state media with charge 

carriers of a single type have been theoretically derived. 

However, conditions for the occurrence and instability of 

thermo-magnetic waves in extrinsic semiconductors with 

two types of charge carriers remain indeterminate.  

It is clear that the determination of instability 

condition in specific impurity semiconductors is of great 

scientific interest. In this theoretical paper we investigate 

conditions for the occurrence of non-stable 

thermorecombination waves in extrinsic semiconductors 

with two types of charge carriers.  

 
BASIC EQUATIONS  

In the presence of electric field 


, of gradients of 

the electron n  and hole n  concentrations, and  

 

temperature gradient 


, the current density for 

electrons and holes is of the form [1]: 

 

   




















ee
j

1
    (1) 

 

   





















ee
j

1
    (2) 

 

                





















n

n

n

n

e




                      (3) 

 

     jjj


,    en ,  11  en      (4)            

 

 

Substituting equations (1), (2) and (3) in the equation (4), 

and using Maxwell equation j
c

rot
 4

 , we obtain 

the following expression for electric field:  
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                                                                                        (5) 

Here  

 



 
 ;  

2


 
  

  ;  111  ; 

                     ;      

 

A detailed description of mathematical method, 

which enable (5) to be obtained from vector equation     

(1-4) is given in paper [1]. In (5), the quadratic terms in 

magnetic field and the diffusion terms are neglected 

because in semiconductors 
 00 ek  where 

0k  is the 

Boltzmann constant,   mean free path for holes and 

electrons, and 
0  is external constant electric field.  

In extrinsic semiconductors the kinetic equations, 

which take the recombination and generation of charge 

carriers into account, must be added to equation (5) for 

electric field.  

Certain impurities in semiconductors create centers 

which can be in several charged states. For example, Au 
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atoms in Ge can be singly positively charged as well as 

singly, doubly and triply negatively charged centers, and 

besides that they can be in neutral state.  

Several energy levels in the band gap correspond to 

such centers. Depending on their charged states, these 

energy levels (impurity centers) can capture electrons or 

holes. As a result of such capture, concentrations of 

electrons (in the conduction band) and holes (in the 

valence band) change, therefore the electrical conduction 

in semiconductor also changes.  

In various experimental conditions, these impurity 

centers are more or less active, so the recombination and 

generation proceed generally via a certain number of 

impurity centers. For example, in experiment [6] (we will 

use its results), singly and doubly negatively charged Au 

centers in Ge were active centers.  

In the presence of an electric field, electrons and 

holes gain energy on the order of 
 0e  (where e  is the 

positive elementary charge) due to the electric field. 

Therefore, in the presence of the electric field, electrons 

can overcome the Coulomb barrier of the singly charged 

center and be captured. Electrons can also be generated 

owing to thermal transitions from impurity centers to the 

conduction band. The number of holes increases due to 

the capture of electrons from the valence band by 

impurity centers, and decreases due to the capture of 

electrons from impurity centers by holes. The probability 

of charge carrier generation and the probability of charge 

carrier recombination are different, and it leads to the 

change in concentrations of electrons and holes in 

semiconductors. A detailed description of kinetic 

equations for electrons and holes in the above-mentioned 

semiconductor was given in paper [7]. These equations 

are of the following form:     
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Here 0  is a total concentration of the singly negatively  

charged centers   and the doubly negatively charged 

centers  , and 1n  is a characteristic concentration 

found on condition that  
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In equations (6-10), )0(  is the coefficient of 

electron emission by the doubly negatively charged 

centers in the absence of electric field, )(  is the 

coefficient of electron capture by the singly negatively 

charged centers, and )0(  is the coefficient of hole 

capture by the doubly negatively charged centers. The 

variation in the doubly negatively charged traps with time 

determines the variation in the singly negatively charged 

centers. Therefore, the equation determining the variation 

in charged centers with time is of the form:    
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In order to obtain the )(k dispersion relation, the set of 

equations (5), (6), (7), (9) and (10) must be solved 

simultaneously, taking into account the Maxwell equation  

 

                                 

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

crot
t

                              (11) 

 

where с is the velocity of light.  

For this purpose, we linearize the set (5-10) in the 

following way:   
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Here k


 is a wave vector, and   is the wave frequency.   

Substituting equation (11) into (5), we get:  
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Linear zing equation (10), we get:   
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Expanding the vector products in (13), we get:  
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where 


kc  is the frequency of thermo-magnetic waves [1].  Multiplying (15) scalar wise at first by 

0


 and 

after that by k


, we can easily get:     
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It should be noted that a  and so in the expression for a  one cannot assume 
090 . Hereinafter we will 

omit superscript 0 of the equilibrium quantities 0

00 ,, n . Substituting (15-17) into the set (6-9), we get:  
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Let us write equations (18) and (19) in the following form:  
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Substituting 4321 ,,,   from equations (18-19) into (21), we get an equation determining the frequency and 

increment of “thermorecombination” wave:  
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It is too complicated to solve the equation (22) taking into account (23), so we will solve the equation (22) for certain 

analytical expressions of the external electric field. It is easy to verify that if   AA then  
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Taking into account (24-25), from (22) we get:   
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                                                                        (26) 

Substituting A  and B , we get the following expressions for the frequency and increment of thermorecombination 

wave:  
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ANALYSIS OF THE OBTAINED RESULTS 
 

As follows from (26-27), the wave with 

frequency 2 (28) is a damped wave, and there is no 

energy emission from the above-mentioned 

semiconductor at the frequency 2 . Emission from the 

above-mentioned semiconductor occurs if the wave 

increment  

                         1 = )(1 












ku

n

n
                (29)   

 

is positive, and a high hole concentration and a low 

electron concentration are required for that. One can see 

from (27) 
10  i  that a ~



1 . The thermo-

magnetic waves decrease frequencies of 

thermorecombination wave, and the frequency of electron 

capture and the frequency of hole emission increase 

frequencies of thermorecombination wave.  

Probably, there are values of )( 0  and   at 

which semiconductors with the above-mentioned model 

emit energy nearly stable. Such a situation can occur at 

certain values of the external electric field and the 

constant temperature gradient.  

The presence of constant and alternating magnetic 

field can change conditions of the thermorecombination 

wave generation. When energy is emitted from a medium, 

a resistance of the medium decreases and the current 

variations in external circuit occur. For investigation of 

external instability (i.e. when the real part of impedance is 

negative 0Re z ), the impedance of semiconductor has 

to be calculated. This problem requires taking into 

account the boundary conditions across electric field at 

ends of the medium and of course the injection at ends of 

the medium. 
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The distribution of optimal polymer compositions of low density polypropylene-polyethylene PP-PELD on τ mechanical 

durability, which is the rupture waiting time (mechanical failure at constant voltage) is measured The test results of continuous field  

action on samples with discontinuous one, saving them in intact state after endurance during the time corresponding to lgτ average 

value, are compared. The action duration and temperature are varied, that’s why the different regeneration degree of strength of 

polymer compositions is observed. It is shown that the accumulated changes, which are identified as fluctuating rupture of chain 

molecules, are reversal ones in the case of mechanical failure of polymer compositions.   

      

Кeywords: polymer compositions, mechanical failure, supmolecular structure, over-barrier transition, failure kinetics  
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INTRODUCTION 

 

The sample rupture under action of applied 

mechanical load are the final acts of developing processes 

in loaded objects preparing the appearance of continuity 

macroscopic loss. Many experimental data on observation 

of so-called “late failure” when sample rupture doesn’t 

become at once after application of some constant 

mechanical load, but after some time the duration of 

which depends on mechanical load value and also on 

series of other factors (temperature, structural object state, 

environment, radiation interaction and etc) indicate it [1].  

We can conclude that during this time the changes 

take place in loaded object, processes leading to total loss 

of object stability to load action develop in one. Thus, the 

mechanical failure isn’t the critical accident but there is 

kinetic phenomenon. 

The questions of reversibility and irreversibility of 

elementary processes preparing the body rupture are the 

important ones.  

The revealing of reversibility degree of accumulated 

processes in mechanical failure kinetics of polymer 

compositions is carried out for this purpose.  

 

EXPERIMENT TECHNIQUE AND SAMPLE  

PREPARATION 

 

The samples from polymer optimal compositions 

low density polypropylene-polyethylene (PP-PELD) in 

percent ratio 80/20, correspondingly with different 

submolecular structures (SMS) are taken in the capacity 

of investigation objects. The film thickness is the several 

decades of micrometers.  

The measurements of mechanical durability are 

carried out on tearing machine in which the temperature 

value and tension stress are given for each sample and the 

time interval from load moment up to sample rupture is 

defined. The durability value in time interval from several 

seconds up to 105sec is measured.   

The durability measurement of samples series not 

less 30 is carried out for each combination voltage-

temperature because of the character essential spread of 

durability values at measurements  

The investigation of reversibility degree of 

accumulation processes leading to mechanical failure is 

carried out on the base of known method which is the 

comparison of durability measurement results at 

continuous action of mechanical load with durability 

measurement results at discontinuous action. Note that 

quantitative analysis of test results of similar type for 

polymer mechanical failure is carried out but not for 

polymer compositions and without necessary account of 

durability statistics [2].      

Thereto, the measurements of mechanical durability 

(τ) of polymer compositions PP-PELD are carries out in 

series from 30 samples in present work because these 

measurements with the discontinuous action of 

mechanical load on single samples don’t give the 

possibility to analyze the sample distribution functions on 

mechanical durability.   

 

 
 
Fig. 1. The integral distribution of polymer composition    

            samples on durability. The mechanical failure of 30  

            samples at Т=223К. 

            а) SC samples of PP-PELD,σ=80 MPа; 

            b) RC samples of PP-PELD,σ=90  МPа. 
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The integral functions of distribution for slowly 

cooled (SC) and rapidly cooled (RC) samples of   PP-

PELD correspondingly on lgτ at corresponding 

mechanical load (σ) and temperature (Т) are shown in 

fig.1 (a,b). 

The function 1-𝑛𝜏 /n, where n is total number of 

samples in series is given on ordinate axis ; 𝑛𝜏  is  number 

of samples saved in intact state after τ endurance time. As 

it is seen the plots of these functions for τ in both 

compositions has the unified S-form with effective 

distribution width ∆lgτ ≃ 11,5. The distribution form is 

close to normal distribution of random variable 

(probability integral). The distribution width is caused by 

structure variation and sample imperfection and etc. The 

mechanical durability values appropriating to failure of 

half number of samples for SC and RC of PP-PELD, 

𝜏1=504sec and  𝜏1=1590sec correspondingly, are defined 

from fig.1(a,b). Further, the new series of the same 

samples are endured at the same σ and Т values during 

τ1time correspondingly, after that the load (σ). As a 

result, the half number of samples, with which the further 

operations are carried out, stay in intact state. The 

meaning and method of data analysis is diagrammatically 

explained in fig.2.  

 

0

1

3

2 1

a a

lgτ
 

 
Fig.2. The distribution scheme of polymer composition samples 

PP-PELD by durability is: 1. Samples which become 

indifferent ones after endurance during 𝜏1 time; 2. The 

distribution by secondary durability lg(τ−𝜏1); 3. 

Samples treated by partial regeneration. 

  

Here the curve 1 is upper part of distribution curves 

(fig.1), i.e. it is constructed from level 0,5 in fig.1 and 

renormalized one on total number of samples (with 

ordinate 1-nτ /0,5n, which are not broken. If we propose 

that accumulated changes in samples, which are not 

broken, during interruption time are disappeared (total 

regeneration) after endurance under mechanical load 

during τ1  time, then the distribution of these samples on 

secondary durability should coincide with curve 1after 

secondary application of the same load. If the 

accumulated changes are totally kept during interruption 

time after endurance during 𝜏1  and load taking off, then 

sample distribution on secondary durability should obtain 

by reconstruction curve 1 from values lgτ to    lg(τ-𝜏1) 

ones and has the form of curve 2 (fig.2), i.e. in the region 

of lesser τ values, especially in the region of distribution 

initial (low) part. Finally, if partial regeneration of 

accumulated changes takes place in the interval between 

load taking off and its repeated application in the samples, 

then the sample distribution on secondary durability 

should take place between 1 and 2 curves, i.e. correspond 

to curve 3. The distributions on durability at continuous 

load action for slow cooling (SC)  PP-PELD samples with 

durability exceeding τ1=504 sec, i.e. renormalized upper 

parts of distribution curves from n on 0,5n (fig.1).               

 

 
 
Fig. 3. The integral distribution of SC samples PP-PELD on   

            mechanical durability. σ=80 МPа, Т=223К. 

 1is failure during time exceeding τ1=504sec; 2 is 

distribution of the same samples on lg(τ-τ1); 3 is 

measured sample distribution on secondary durability 

after “resort” during 103sec at 223K; 4 is measured 

sample distribution on secondary durability after 

“resort” during 103sec at 323K (regeneration absence). 

 

Points 3 are reconstruction results of points 1on 

coordinate lg(τ-τ1). Points 3 are experimental data on 

secondary durability after sample endurance under load 

during time τ1 and load interruption time 103sec at 223К. 

The closeness of 2 and 3 points in fig.3 evidences on fact 

that changes accumulate in samples during τ1  of first 

endurance under load. These changes keep in load 

interruption time at the same temperature that leads to 

lower values of secondary durability, The corresponding 

data for  RC samples PP-PELD are similar ones, i.e. the 

accumulated changes in both samples behave as 

irreversible ones under conditions of mechanical failure 

kinetics at comparatively low temperatures.  

For mechanical failure during the “resort” the 

samples are endured at the exceeded temperatures. The 

results of such tests when unloaded SC samples of 

compositions are endured at 323K during 103  sec in 

interval are presented in fig.3 (points 4).It is seen that 

“resort” temperature increase doesn’t lead to change of 

sample distribution on secondary durability, i.e. change 

regeneration doesn’t observed. This allows us to conclude 

that changes caused by action of mechanical load are the 

enough stable ones. The earlier mentioned irreversibility 

of accumulated changes at mechanical failure of polymer 

compositions [2] is confirmed in present work. This well 

agrees with conception on accumulation of chain 
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molecule rupture during the time. Especially the rupture 

act chain molecules at mechanical stress carried out by 

fluctuation mechanism, behaves itself in the capacity of 

elementary failure act of polymers and compositions on 

the base polymer-polymer [1]. 

 The further polymer failure process is developed on 

the base of such molecular ruptures: the formation of 

germ cracks and rupture of whole sample [1]. It is natural 

that recombination of chain molecule rupture is enough 

incredibly, so the secondary free-radical reactions, 

“convolution” of molecule parts unloaded by rupture 

prevent to regeneration of its continuity [1,3] after 

rupture. In this fact we can see the specific of polymer 

failure process and their compositions. Note that 

continuity regeneration at mechanical failure of three-

dimensional atom-molecular structure bodies, in 

particular, metal is possible [4]. At corresponding 

conditions (temperature, pressure) we can reconstruct the 

initial continuity of objects (“cure” of accumulating 

micro-cracks and pores) and whereas to multiply increase 

of their mechanical durability.                      

   

CONCLUSION 

 

The results of our investigation are data on character 

of accumulation processes leading to rupture of polymer 

compositions with confirmation of irreversibility of these 

processes in the case of mechanical failure of polymer 

compositions obtained on the base of statistical analysis 

of mechanical durability. 

_______________________________________
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The electron-diffraction pattern of monocrystalline films (MF) Zn1.5In3Se6 ,obtained by rotation of MF round axis 

perpendicular to film plane, which earlier is inclined on  angle from perpendicular position to incident electron beam and also 

electron-diffraction pattern obtained by MF rotation round а* axis of reciprocal lattice perpendicular located to electron beam, are 

studied. The thin structural effects and different series appear separately on electron-diffraction patterns obtained by new rotation 

methods as opposed to electron-diffraction patterns of oblique textures where the thin structural effects appear and different series of 

reflexes superimpose one on another. The three-package rhombohedral polytype (3R) with crystal lattice parameters a = 4.046 Å,         

c = 59.292 Å, sp. gr. R3m and also superlattice parameter Аs.l.= 3 а are found.        

                                         

Keywords: new rotation methods, electron diffraction, inorganic compound structure 
PACS: 61.05.-a, 61.14.-x, 61.66.Fn. 
 
INTRODUCTION                                                         

         

The electron-diffraction methods are more effective 

ones to investigate of layered crystals. The development 

of nanotechnology stimulates the design of new electron-

diffraction methods having the specific advantages to 

investigate of nanosamples. The present paper is devoted 

to study of nanothick monocrystalline films (MF) 

Zn1,5In3Se6  by new electron-diffraction rotation methods 

[1-4]. Earlier the three-package rhombohedral polytype 

(3R) is defined by electron-diffraction patterns of  

Zn1,5In3Se6 textured samples [5].        

 

EXPERIMENTAL PART AND RESULT  

DISCUSSION  

 

Zn1,5In3Se6 crystals synthesized by ChTR (chemical 

transport reaction), are divided into two parts 

perpendicularly to layers. The crystalline structure of one 

of them is studied by method of oblique texture. The 

samples for experiment are obtained by precipitation of 

micro-crystals (obtained by easy comminution with 

further dispergation by ultrasound) from suspension in 

water on metallic grid covered by celluloid film. The one 

orientation remains constant, in connection with layered 

structure of crystals, after the crystal precipitation from 

the suspension in water on the film. The experiment is 

carried out on high-voltage electronograph EG-400 

(V=350kV, 2L=33,2mmÅ). 

The electron-diffraction patterns from Zn1,5In3Se6 

textures is shown in fig.1. The electron-diffraction pattern 

interpretations are made by the following formulas for 

oblique textures [6]:    

        d100 = 3a/4 = 2Lh/2Rh00,                (1) 

 

         Dhk l  = (R
2

hkl – R
2

hk0)
1/2

,                      (2) 

  

       D  = с* L = (Dhkl – Dhk(l-1)),               (3) 

 

         d001 = с = 1/с*= L/D.                       (4) 

 
 
Fig.1. Electron-diffraction pattern of Zn1,5In3Se6 textures. 

 

The polytype 3R with elementary cell parameters     

a = 4.046, c = 59.292 Å, sp. gr. R3m and with structure 

module …hTcThOhTcThP…, where Т and О are two-

dimensional tetrahedral and octahedral layers, P is empty 

interlayer, h and c are hexagonal and cubic package of Se 

atomic planes, is established. 

The metal disposition (a,b,c positions) in compact 

selenium package (A,B,C positions) is following: 

…AbBaCcApCaAcBbCpBcCbAaBp…,  

…Se1 2/3In;1/3Zn Se2 1/3In;0,42Zn Se3 In Se4 

1/3In;0,42Zn Se5 2/3In;1/3Zn Se6 P…    

The other part of Zn1,5In3Se6 crystal is used for 

obtaining of thin MF, suitable for electron-diffraction 

investigation.  

The thin MF are obtained by film exfoliation from 

thick crystal by the adhesive tape.  

The thin MF are studied by electron-diffraction 

rotation methods developed by M.G.Kazumov [1-4]. 
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Fig.2. Electron-diffraction pattern of monocrystalline rotation imitating the electron-diffraction patterns of Zn1,5In3Se6 oblique 

texture type. 

 

 

 
                                 

Fig.3. Electron-diffraction pattern of 3R-polytype Zn1.5In3Se6 rotating round axis of а* reversal lattice. 

 

The electron-diffraction pattern obtained by rotation 

(during exposition) of MF film on ω = 60
0
 angle round 

axis perpendicular to film plane which is previously 

inclined to incident electron beam on angle  = 60
0
 

(reciprocal lattice plane hk0 is in MF plane), is shown in 

fig.2. The main crystal lattice parameters a = 4.046 Å,      

c = 59.292 Å, sp. gr. R3m and also superlattice parameter 

Аs.l .= 3 а in basic plane of main lattice, are found. The 

reflexes being on weak ellipses which are first, third, 

fourth, seventh, eighth and other ones are to superlattice. 

The reflexes being on the strong ellipses, which are 

second, fifth, sixth, ninth and other ones are to main 

lattice. The reflex intensities in fig.1 coincide with ones of 

corresponding reflexes of main lattice (fig.2) and it shows 

the structure identity (fig.2). 

The electron-diffraction pattern obtained by rotation 

of MF film Zn1.5In3Se6 round а
*
axis of reversal lattice 

perpendicularly situated to electron beam, is shown on 

fig.3. The registration is begun from hk0 plane; the 

essential delay of this plane under electron beam is 

admitted. The polytype 3R with above mentioned lattice 
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parameters and super lattice is observed.  The different 

node series (series of reflexes) appear separately but the 

nodes with l small values join each other in each node 

series hk (h, k = const, l changes). The quantity of joined 

reflexes depends on value and on distance of node row 

and on rotation с* axis, i.e. on sp. Rhk0. 

    

CONCLUSION 

 

The electron-diffraction patterns of monocrystal 

rotation (EMR) have the additional advantage series 

besides the texture ones have. EMR give the concrete-

local diffraction and structural information relating to 

isolated crystals and electron-diffraction patterns from 

textures give the integral averaged information relating to 

crystal variety. In EMR the higher sensitivity to weak 

diffraction effects, which can’t be observed in electron-

diffraction patterns of textures and polycrystals, is 

observed. The reflexes in EMR localize in the point form 

and they spread in the form of parenthesis or total rings in 

electron-diffraction patterns of textures and polycrystals.                            

The other advantage is the possibility to avoid the 

consequence of object dispergation accompanying to 

preparation of polycrystals and textures.It can not only 

destroy the crystalline structure perfection, but lead 

sometimes to phase transformations. So, for example, the 

graphite comminution causes the polytype transition    

2H-3R. 
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We reexamine the complete solutions of the Schrödinger equation for a particle with time-dependent mass moving in a time-

dependent linear potential on the base of the evolution operator method. We solve the problem in both, configuration and momentum 

spaces. Appropriately choosing the initial wave functions we can obtain from the representation (t)=U(t)(0) all kinds of wave 

functions of the system under consideration, in particular, those solutions which are known in the literature. For example, it is shown 

that evolution operator can be used to obtain the Gaussian-type, Airy-type and oscillator-type wave-packet solutions of the time-

dependent system. The explicit form for the inital momentum and coordinate operators (two linear independent invariants) )(ˆ
0 tp  

and )(ˆ
0 tx  are found. We show that the problem of a particle moving in a linear potential is unitary equivalent to that of a free 

particle. 
  
Keywords: Time-dependent linear potential, evolution operator, invariants 

PACS: 03.65.-w, 03.65.Fd, 02.30.Tb 

 

1. INTRODUCTION 

 

During the past several decades the analytical 

solutions of the Schrödinger equation with the time-

dependent linear potential have attracted much attention 

of physicists [1-8]. To study the time-dependent quantum 

systems there are many methods, such as LR invariant 

method [9, 12], path-integral method [10], space-time 

transformations method [5], evolution operator method 

[11], etc. For instance, in Ref. [1] using the Feynman’s 

path-integral method the solution of the time-dependent 

linear potential problem in the form of the Airy function 

was presented and was shown that the Airy packet 

propagates without change of form. The Wigner function 

and exact transition amplitude between energy eigenstates 

for a particle in a general time-dependent linear potential 

was calculated in Ref. [3]. In Ref. [4], Guedes with the 

help of the LR invariant method solved the time-

dependent Schrödinger equation for the linear potential of 

the particular form V(x,t)= qx(ε0+ εcosωt). Feng [5] 

followed the space-time transformations of the 

Schrödinger equation and found plane-wave type and the 

Airy-packet type solutions. Later Luan et al. [6] used a 

non-Hermitian linear LR invariant to obtain Gaussian-

type wave-packet solutions of the system. Bekkar et al. 

[7] gave a general solution of the Schrödinger equation 

with the time-dependent linear potential, which 

corresponds to the linear LR invariant 

)(ˆ)(ˆ)(1 tCxtBptAI  .  

The purpose of the present paper is to undertake a 

completely analytical solution for the problem above by 

means of the evolution operator method. This method has 

long time been used         

to solve problems in quantum mechanics and quantum 

field theory. We demonstrate that the evolution operator 

method allows us to find, in principle, all (infinitely 

many) solutions of this problem, including those solutions 

which are known in the literature [1-7]. Therefore, it can 

be argued that all known solutions [1-7] are in fact partial 

solutions to the problem under consideration. We show 

that a complete set of Lewis-Riesenfeld (LR) invariants 

for this problem is not limited to linear and quadratic 

invariants.The reason for this may formulate as follows: 

according to the evolution operator method, the solutions 

of the time-dependent Schrödinger equation 0)()(ˆ ttS   

can be represented as )0()()(  tUt  , where 

)()(ˆ tHitS t    and )0(  is any function (initial 

wave function). The evolution operator U(t) satisfies the 

Schrödinger equation 0)()(ˆ tUtS  with the initial 

condition 1)0( U . One can expand the function )0(  

over some complete set of the orthogonal functions

 :)0(n 
n

nnc )0()0(  . Then the wave function at 

arbitrary time t can be given as 
n

nn tct )()(  , where  

)0()()( ntUtn   . (In the case of expansion in the 

Fourier integral   deg xi

 )()0(  for the wave 

function at time t we obtain an expression

  dtgt  )()()( , where xietUt 
 )()(  .)  

It is well known [12] also that one can construct two 

(for one-dimensional system) linearly independent simple 

invariants )(ˆ
0 tp and )(ˆ

0 tx , provided that the evolution 

operator for a quantum system exists:     

 

                    )(ˆ)()(ˆ 1

0 tUptUtp  ,                              

                    )(ˆ)()(ˆ 1

0 tUxtUtx   .                    (1.1) 

 

They are the operators of initial momentum and 

coordinate. All other invariants can be expressed in terms 

of these operators. Recall that the invariant I(t) is the 

operator which should commute with the Schrödinger 
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operator 0)](),(ˆ[ tItS , yielding the analogous to (1.1) 

expression for I(t):      

                                                                                                                             

                        )()0()()( 1 tUItUtI   .             (1.2)  

                                      

It is clear that if )ˆ,ˆ()0( xpGI  , then 

))(ˆ),(ˆ()( 00 txtpGtI  .  

On the other hand, according to the LR invariant 

method [9], the solutions of the time –dependent 

Schrödinger equation can be constructed in terms of the 

eigenstates )(tn  of the LR invariant )(tI  with the time-

independent eigenvalues n : )()()( tttI nnn   . The 

function )(tn  does not satisfies the Schrödinger 

equation, but it is an eigenfunction of the operator :)(ˆ tS

)()()()(ˆ ttsttS nnn   . A solution of the Schrödinger 

equation is chosen as  
 

                      ),()(
)(

tet n

ti

n
n  


                      

(1.3)
                            

 

 

where the phase )(tn  is a function of time only.  It 

follows from the Schrödinger equation for )(tn  that 

)(tn  satisfies the relation 

                         

t

nn tdtst
0

1 )()(  .                (1.4)                              

One can obtain the state (1.3) also from the 

eigenstate )0(n  of the operator  I(0) with the same 

eigenvalue 
n  by means of the evolution operator )(tU : 

                                

        
)()0()()(

)(
tetUt n

ti

nn
n  

 .          (1.5)   

                 

Thus, the evolution operator )(tU  transforms any 

eigenstate of  I(0) into an eigenstate of )(tI , or, more 

precisely, into a solution of the Schrödinger equation. 

The initial wave function )0(  can be expand over 

the complete set of the eigenfunctions  )0(n  of the 

operator I(0), thereby the solution of the Schrödinger 

equation is obtained as: 

 

  
n

n

ti

n

n

nn tectUct n )()0()()(
)(  

.   (1.6)              

 

The solution, obtained in [7], corresponds to an 

expansion over the eigenfunctions of the linear invariant 

0001
ˆˆ)0( CxBpAI   at 00 B , i.e. over the plane 

waves, which can be understood as a usual Fourier 

transformation.  

           It is clear that there may exist other operators I(0), 

with complete set of the eigenfunctions, and one can 

expand )0( over this complete set. One of such kind 

operator is   

  



pa

eiaxxB
pa

AI

ˆ

003 )(
ˆ

cosh)0(










 ,      (1.7) 

 

which is Hamiltonian of the relativistic linear harmonic 

oscillator [14,15]. The eigenfunctions of )0(3I  are 

expressed through the Meixner-Pollaczek polynomials    

                                           

       )2/;()0( 0   axPaixAN n

aix

nn  
,  (1.8)                         

 

where   21

00

2

0 2,
4

1

2

1 
 BAaA . The 

operators ),0(30 IK  axK 1
 and 













pa
AIK

ˆ
exp)0( 032

 form the Lee algebrasu (1.1), 

i.e.     021210 ,,, iKKKiKKK  .  

Thus, now it becomes clear that the complete 

solution of the Schrodinger equation with the time-

dependent linear potential is not exhausted by the results 

of [1-8]. We will consider, as in [5], a more general case, 

i.e., a particle with time-dependent mass moving in the 

time-dependent linear potential. This time-dependent 

dynamical problem could be solved in either 

configuration or momentum space. It can be found that 

the all known in the literature solutions [1-8] are merely 

the particular cases in comparison with our result. We 

also note that in the evolution operator method there is no 

further problem of finding time-dependent phase, inherent 

LR invariant method. The derivation of the exact wave 

functions is straightforward and is obtained with much 

less effort than other results       [1-7] based on the other 

methods.  

The main results of this paper are as follows. First, 

we give an explicit form of the evolution operator )(tU  

in the х- and р-representations for the Schrödinger 

equation describing the motion of a particle with the time-

dependent mass in the time-dependent linear potential 

Sec. II). Second, we show that all known solutions can be 

derived from a general representation for the wave 

function )0()()(  tUt  (Sects. II, III, IV). Since the 

time-dependent system in the initial time can be in any 

state, the corresponding Schrodinger equation has 

infinitely many solutions.  

However, appropriately choosing an initial wave 

function, one can always construct a solution of the 

Schrodinger equation with the required properties. For 

example, in Sec. V we obtained the square-integrable 

oscillator-like solutions. Third, we find the explicit form 

of the initial momentum and the initial coordinate 

operators )(ˆ
0 tp  and )(ˆ

0 tx , through of which all other 

invariants can be expressed (Sec. III). 

 We show that the complete set of the LR invariants 

for the system under consideration is not restricted by the 

linear and quadratic invariants (Sec. VI).  

Fourth, we have shown that a problem of a particle 

that moves in a linear potential and a free particle problem 

are unitarily equivalent.  
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2. CONFIGURATION SPACE 

 

The Schrödinger equation for describing the motion 

of a particle with time-dependent mass in the presence of 

time -dependent linear potential is of the from    

  

),()(
)(2

),( 2
2

txxtF
tM

txi xt  












(2.1)                            

 

where M(t) and F(t) are arbitrary time-dependent 

functions. The solution of the equation (2.1) may be 

obtained from the evolution operator ),( txU   

         

                  )0,(),(),( xtxUtx   .              (2.2)                                              

 

The explicit form of the operator ),( txU
 
was found in 

[15] 

      

 







t

x tdti
tM

i
tix

eetxU 0

2
)(

)(2

1
)(

),(
 




,   (2.3)                                              

in which the notation tdtFt

t

 
0

)()(  is used. Now 

taking into account (2.3) in (2.2), one gets  a following 

general representation for the solution of the Schrodinger 

equation (2.1) 

                                           

 
)0,(),(

2
21

0 )()(
)()(

xeeetx xx tsits
tstx

i










 ,                                
                                                                                     (2.4) 

where    )(tsi   (i=0, 1, 2)  are  defined, respectively, as  

td
tM

t
ts

t





 

0

2

0
)(2

)(
)(


,      td

tM

t
ts

t





 

0

1
)(

)(
)(


,           

                            




t

tM

td
ts

0

2
)(2

)(

 

.                      (2.5) 

If we set M(t)=m, we will find that  

           
m

t
ts

2

)(
)( 2

0


 ,      

m

t
ts

)(
)( 1

1


 ,              

                           m

t
ts

2
)(2    ,                               (2.6) 

Where      tdttdtFtdt

ttt

 


000

1 )()()(  ,    

                tdttdtFtdt

ttt









 



)()()(
0

2

2

00

2  . 

A particular form of the evolution operator

),( txU , when mtM )(  and 
0)( FtF   was given in 

[8]. In this case we have tFt 0)(  , 2)( 2

01 tFt  ,

3/)( 32

02 tFt  . Now choosing in (2.4) different initial 

wave functions )0,(x  one can construct different wave 

functions ),( tx  at time 0t . 

For example, appropriately choosing the initial 

wave function we obtained from (2.4) all known in the 

literature solutions [1-8] of the equation (2.1) as the 

special cases:     

1) Nx )0,( . In this case we easily get  

                                                                

                    

 )()( 0

),(
tstx

i

Netx





 
 ,                (2.7) 

 

where N is a normalization constant. To compare with the 

solution in Ref. [4], we let F(t) take the form  

)cos( 0 tq   , and set mtM )( , which yields  

 

 tt
q

t 


 sin)( 0  , 

                    







 )2sin

2

1
(

2

1
)cos(sin2

3

)(

2
)( 2

0

3

0

3

2

0 ttttt
t

m

q
ts 




.              (2.8) 

 

Substituting these expressions in (2.7), we obtain the solution of (18) in [4] 

 

                 

 

.)2sin
2

1
(

2

1
)cos(sin2

3

)(

2
exp

sinexp),(

2

0

3

0

3

2

0





























ttttt
t

m

iq

xtt
iq

Ntx














            (2.9) 

  

2)  2/)0,( iAxex  , where A is an arbitrary real number. In this case using (A.3) one can obtain the following 

expression for the wave function  
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   )()(
)()( 02

21

2

1
),(

tstx
i

AtsitsxiA
eeetx








 

   ,                     (2.10) 

 

which coincides with the formula (6) in [5]. 

3) )()0,( BxAix  , where B is an arbitrary constant and )(xAi  denotes the Airy function. In this case, after 

some simple transformations in (2.4) with the help of the formula (A6) can be shown that  

 

                                                       

   

  .)()(

),(

32

2

2

1

)(
3

2
)()()()(

63
2

3
1

3
20

BtstsxBAi

eetx
BtsitsxBtsitstx

i












                              (2.11)

 

 

This result is equivalent to formula (8) of Ref. [5]. 

Note that the formula (15) of Ref. [1] [17] corresponds to the following initial condition 

 32/)0,( BxAix   and, therefore, it is obtained from (2.11) by replacing 
32/BB   and mtM )( . By 

choosing the initial wave function in the form )0,(x     0

3/12

0 //2 FExmFAi    one gets the formula (24) of 

Ref. [3].   

         In the next two Sections we obtain a general solution of the Schrodinger equation (2.1) by the evolution operator 

method, which yields the results of [6, 7] as a particular cases.   

 

3.  INVARIANTS FOR THE TIME-DEPENDENT LINEAR POTENTIAL 

 

Knowledge of the evolution operator (2.3) allows us to find not only the wave functions, but also to construct the 

LR invariants for the system. In the case of the time-dependent linear potential we have the following general 

expressions for the invariants (1.1) 

 

                                                                  
 tptp  ˆ)(ˆ

0 , 

                                                                   
  )()()(2ˆ2ˆ)(ˆ

1220 tststptsxtx  
.                                                (3.1) 

 

All other invariants are expressed through them. For example,  

 

                                                 )(ˆ)(ˆ)()(ˆ)(ˆ)( 000001 tCxtBptACtxBtpAtI  ,                                    (3.2а) 

                                 
  ),(ˆ)(ˆ)(ˆ)(ˆˆˆˆ)(ˆ)(

)(ˆ)(ˆ)(

22

2

00

2

0

2

02

tCxtBptAxtKpxxptEptD

txKtpDtI




                 (3.2b) 

                                   



)(ˆ

000
0

03

0

)(ˆ)(ˆ
)(ˆ

cosh)(

tpa

eiatxtxB
tpa

AtI










   .                                 (3.2c) 

 

At mtM )(  the invariants constructed in Refs.[4, 6, 7] are obtained from (3.1) and (3.2a). 

a) Let us find with the help of the evolution operator a particular solution of the Schrodinger equation (2.1), 

corresponding to the linear invariant (3.2a) at 00 B . For this purpose, as the initial wave function we choose the 

eigenvector of the operator )0(1I  at 00 B  corresponding to the eigenvalue , which has the form  

                                                               
x

i

ex
1

)0,(



 ,   001 AC  .                                                          (3.3) 

                                                

From (2.3), (2.4) and (3.3), we then get the solution of the equation (2.1): 

 

             ,
)(

exp
)(

)(2

1
exp),(),(

00

2

0

1








 















 






 


 x

A

tCi
td

A

tC

tM

i
etxUtx

tx
i










    (3.4) 
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where 
00 )()( CtAtC   . To derive the relation (3.4) 

we have used the formula  

                    
x

i
x

i

x efeif
11

)()( 1



      .            (3.5) 

 

If we set mtM )( , we will find that (3.4) coincides 

with the formula (12) of Ref . [7] [17]. 

     b) We now find the general solution of equation (2.1) 

corresponding to the linear invariant (3.2 a) at 00 B . 

To this end we expand the initial wave function over the 

plane waves (3.3), i.e. 

                 


degx
x

i







1

)()0,( 
     ,            (3.6) 

where )(g  is an arbitrary weight function (Fourier 

transform of )0,(x ). Then from (2.4), (3.4) and (3.6) 

we obtain the desired solution of equation (2.1) 

  dtxgtx 




 ),()(),(      ,           (3.7) 

(3.7) is a generalization of the formula (13) of Ref. [7] to 

the case of the time-dependent mass. If we now choose 

   23exp)( 33 Big    and use the integral 

representation of the Airy function (A.12), then we find 

after integrating (3.7):
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                (3.8) 

When mtM )(  one gets from the equation (3.8) the following formula [18]                                                                           
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where mtS / . 

One can easily check that the functions (3.4) and (3.8) satisfy the Schrödinger equation (2.1). 

  

4. MOMENTUM SPACE  

 

We can solve the problem in the momentum p-space by evolution operator method.  We write the Schrödinger 

equation (2.1) in the momentum space  
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The evolution operator in the p-space has the simple form [15]:  
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We now can write a symbolic solution of (4.1) by using the time evolution operator for the system  
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or equivalently  
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Here )0,(p  is an arbitrary initial wave function in p-space. In the particular case when mtM )(  from (4.4) 

follows the formula (35) of Ref. [6]. 

As a particular example in the momentum space we obtain Gaussian-type wave-packet (GWP) solution of (4.1). 

We consider the initial wave function in p- space, given by [6]   
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where 0p  and 0x  are the average values of the momentum and coordinate in this state. After some simple algebra, we 

obtain from (4.4) the wave function at t>0: 
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where the functions  )(tpc
 and )(txc

 are defined as  follows (compare with [6]): 
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Here the parameter 
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indicates a time-dependent measure of the spreading time of the GWP. 

In the configuration x-space the function (4.6) takes a form  
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where  )(/1)( 22 tTitt  . When mtM )(  we have 


22
)(

m
TtT  ,   mttpxtxc )()( 100   and the 

functions (4.6) and (4.9) coincide with the solutions (38) and (40) of Ref. [6], respectively. 
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In what follows we wish to calculate the uncertainty relation. After some calculation we find that the uncertainties 

in x and p in the state ),( tx  (4.9) (or ),( tp  (4.6)) are  
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222 4)( p .                                                                               (4.10b) 

 

Thus, the uncertainty relation is expressed as  
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and, in general, does not attain its minimum value.  For mtM )( , the incertainty relation (4.11) reduces to that 

obtained in Ref. [6]. 

 

5. OSCILLATOR-LIKE SOLUTIONS 

 

The time-dependent Schrödinger equation (2.1) has various solutions. Here we find the oscillator-like solutions for 

this equation. To this end we choose the initial wave function )0,(x  in the form of the stationary harmonic oscillator 

wave function, i.e.  
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where )(xHn
 is Hermite polynomial, !20 ncc n

n   and  
41

0 )( mc  . Let us substitute (5.1) into (2.4) and 

calculate the action of the evolution operator on the initial wave function with the help of the formula (A9). As a result, 

we obtain the desired oscillator-like wave functions for a particle moving in the time-dependent linear potential  

 

                                             

 
 

   
.

)(

)(

)(2

)(
exp

)()(exp
)(

)(
),(

1

2

1

2

0

2/
*













 







 





















t

tsx
H

t

tsx

tstx
i

t

t

t

c
tx

n

n

n
n



















                              

(5.2) 

 

For each fixed t the wave functions (5.2) are orthogonal and normalized. 
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Here the following notation is introduced )(21)( 2

2 tsit   .                                                 

In the particular case when mtM )(  we have  tit  1)( . In this case, by taking into account the explicit 

form of the functions  )(tsi  (i=0, 1, 2), given in (2.5), one gets the following expression for the oscillator-like wave 

functions: 
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We should like to find the wave functions (5.2) also using the LR invariant method [9, 12]. For this purpose we 

choose those linear combinations of the invariants (3.1) which have the form of the annihilation and creation operators: 
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Here a  and 
a  are the usual oscillator`s annihilation and creation operators 
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and  tsxtx 11
ˆ)(ˆ  ,  tptp  ˆ)(ˆ

1
. 

One now can construct a following quadratic invariant for the Hamiltonian  
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The operators )(tA  and )(tA
 have the properties   
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where the states ),( txn  are eigenstates of the invariant  )(
~

2 tI , i. е. 
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Here the ground state is defined, as usual, by the equation 0),()( 0 txtA  , whose normalized solution is   
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It can easily be shown by induction on n that the excited states of the operator )(
~

2 tI  have the following explicit 

form  
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The relation between the solution (5.2) of the Schrodinger equation (2.1) and the eigenfunction (5.11) of the invariant 

)(
~

2 tI  is:   ),(/)(exp),( 0 txtistx nn   . The fact that the functions ),( txn  and ),( txn differ from each 

other by the time-dependent phase factor )/)(exp( 0 tis  can be understood as follows: both of the operators  )(tU  

and )(1 tU 
 contain the same phase factor but with opposite phases, therefore these phases are canceled in the 

construction of the A and  
A invariants. 

In the momentum representation the wave function (5.2) will have the form  
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Since each ),( txn (5.2) satisfies the time-dependent Schrödinger equation (2.1), the general solution 
),( tx

  

of the time-dependent Schrödinger equation (2.1) is a superposition of all ),( txn : 
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where  nc  are arbitrary constants. 

 

6. Unitary equivalence between a particle in a time-dependent linear potential and a free particle 

 

Our goal in this section is to show that a problem of a particle moving in a time-dependent linear potential is 

unitarily equivalent to a free particle problem. More precisely we expect this equivalence to be valid whatever the time-

dependence of the mass and in particular for constant one. This unitary equivalence is simple to exhibit. 

Rewrite the Schrodinger equation (2.1) for a particle in the time-dependent linear potential as  
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Then the equation (6.1) takes the form                                                                                                               
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i.e. one gets the Schrödinger equation for a free particle. The unitary operator satisfying the conditions (6.2) is equal to                                                                                              
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Let us write the solution of the Schrödinger equation (6.3) for the free particle as  
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From this we can get different solutions for the free Schrödinger equation (6.3). 

From the comparison of (2.3), (6.4) and (6.5) follows that 21UUU  . As follows from the definition, the 

operator 1U  (6.4) transforms each solution of the free Schrödinger equation into the solution of the Schrödinger 
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equation for the linear potential, whereas the operator 
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   performs the reverse 

transformation. For example, the action of the operator ),(1 txU  on the function (3) of Ref. [1] yields the function (15) 

of the same work and vice versa. To show this, we rewrite the functions (3) and (15) of Ref. [1], respectively, as 
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where )(tsi  (i=0, 1, 2) are given in (2.6). It is evident 

now that  
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  7. CONCLUSİON  

 

We have studied Schrödinger equation for a particle 

with time-dependent mass moving in the time-dependent 

linear potential with the help of the evolution operator 

method.  

Our analylsis has shown that the key of solving the 

time-dependent Schrödinger equation is to find an 

evolution operator )(tU  of the system. This is explained 

by the following facts: 1) In this case, unlike LR invariant 

method, there is no further problem of finding the time-

dependent phase; 2) The general representation for the 

wave function in terms of the evolution operator  

)0()()(  tUt   allows us to get all kinds of solutions  

of the Schrödinger equation, including those known in the 

literature, and with much less efforts; 3) Since the time-

dependent Schrödinger equation has infinitely many 

solutions, it is impossible to exhaust all the solutions of 

the time-dependent system. Nevertheles, we can always 

find any solution with the required properties because the 

unitary operator )(tU  preserves all the properties of the 

initial wave function. For example, if the initial wave 

function is square-integrable, then such will be ),( tx ; 

4) The evolution operator allows us to find not only 

solutions of the time-dependent Schrödinger equation, but 

also to construct all kinds of invariants. By using the 

evolution operator the explicit form of the operators 

(invariants) for the initial momentum and the initial 

coordinate )(ˆ
0 tp  and )(ˆ

0 tx  was found. The other 

invariants are expressed through them.  

Our analysis also shows that a complete set of LR 

invariants for the system under consideration is not 

restricted by the linear and quadratic invariants. We have 

also shown that the problem of a particle in the linear 

potential is unitary equivalent to that of a free particle. 

This fact is in agreement with a possible way of further 

generalization of the dynamical symmetry concept, 

according to which one can study a combination of 

several systems with different Hamiltonians and to 

construct operators that transform the wave functions, 

describing the states of all of these different systems, into 

each other [19].  

We agree with the point of view expressed by Luan 

et all [6] that if we treat the driving force as a time-

dependent gravity, then an observer in the “free-fall 

frame” will not be able to feel the gravity. As a result, the 

frame effectively became an inertial one. This provides a 

physical picture for the unitary transformation (6.2) we 

have performed. 

Further, we note that by following Ref. [20], where 

the coherent states (CS) 
F

tz ,  are constructed as the 

eigenstates of the annihilation operator (of the linear 

invariant) for a free particle, we can also construct the CS  

L
tz ,  for the system under consideration. Of course the 

CS 
L

tz ,  can also be obtained from 
F

tz ,  with the 

help of the action of the unitary operator )(1 tU , i.e. 

FL
tztUtz  ,)(, 1 .  

We feel that the present paper may stimulate other 

efforts to search for simpler treatments and solutions of 

similar problems which until now have been treated only 

by complicated methods. 

It was pointed out in Ref. [6] that in order to get the GWP 

solution it is necessary to use non-Hermitian linear 

invariant. This fact is obvious, since it is well known that 

the eigenfunctions of the annihilation operator – CS are 

square-integrable. Using the evolution operator method, 

we can get the solutions of the Schrödinger equation, not 

only being in a class of the normalizable to one, or to  -

function solutions describing the space of states of a 

quantum system. For example, the action of the evolution 

operator on the singular functions (on the initial wave 

functions), yields the singular solutions of the time-

dependent Schrödinger equation as well.  
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Appendix 

1. Action of the operator 
2
xe


 on a function )(xf  can be defined as follows 
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To derive the formula (А.9) we used the following integral [21] 
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2.  In some calculations the integral  

                                                 dxxbAixaAieJ ikx )()(   


                                                                

(A.11) 

with the real parameters and   could be useful. To evaluate this integral we use the following integral 

representation for the Airy function 
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Silk is widely utilized in various areas of industry that includes textile, medical, technological and etc. Mechanical properties of 

silk play an important role in many applications. In this work, we built a computerized device that can measure time-dependent 

mechanical properties of polymers. Silk was chosen as a paradigm. The device uses optical detection for mechanical deformation that 

increases sensitivity and precision of measurements compared to that of the previously used one. The pulleys with variable diameters 

act as an amplifier for deformation scale. Deformation of silk threats and time to rupture in constant stress conditions were monitored 

in real time using a home-built LabView program. Variable detection rates, which can be as low as data/1ms, can be used in the 

program. Mechanical properties of two kinds of silk samples were measured. The device clearly differentiates mechanical properties 

of the samples.  The device can be used to study time-dependent mechanical properties of various types of polymers in fibrous as 

well as film forms. 

 

Keywords: silk,mechanical strength,“LabView” programming, mechanical time-dependent instrument 

PACS: 82.35.Lr 

 

INTRODUCTION 

 

Silk is a typical material produced by various 

insects, such as bombyx mori, nelphia and etc. Silk is 

being utilized as a textile and suture materials thousand 

years ago [1]. Silk consists of two parallel fibroin fibers 

and gummy part sericin that holds them together [2].  

Sericin of silk has useful properties, such as resistant to 

oxidation, antibacterial, UV resistant and absorbing and 

releasing moisture easily [3,4].  

Molecular organization of silk fibers determines 

their unique physical and chemical properties of fibroin, 

such as strength, toughness, stiffness and etc. [2].  

Fibroin has a simple amino acid composition. 

Glycine (Gly), alanine (Ala) and serine (Ser) that have the 

smallest side chains, comprises about 82% of total amino 

acids. 

Silk fibroin is used in diverse forms, such as gels, powder, 

membranes and fibers
 
[1]. Silk fibroin shows very good 

biocompatibility, biodegradability and oxygen and water 

vapor permeability properties. Therefore, silk fibroin is 

very valuable material for biomedical, cosmetic and 

pharmaceutical industries.   

Every kind of silk might have been evolved to 

perform the special task. Silk fibers from different insects 

show diverse physicochemical properties that can be 

attributed to their morphology [3].  

One of the most important characteristics of silk is a 

mechanical strength, which is time-dependent by nature. 

Therefore, reliable measurements of time-dependent 

mechanical properties of polymers are very important.  

Here we describe computerized device for such 

measurements. It can be used for various types of 

polymers in fibrous as well as film forms 

 

MATERIAL AND METHOD 

 

The experiments were carried out with two kinds of 

silk samples using home-built laboratory instrument that 

is described below. Two kinds of silk cocoons were 

tested. The samples with the 10 mm silk threads with the 

diameters of about 50-80 μm were used.  

Computerized instrument to measure time-dependent 

deformation and time to rupture under constant 

mechanical stress conditions of polymers.  

Schematic diagram of the device is shown in fig. 1.  

 
 

Fig. 1 The computerized device to measure the time-dependent 

mechanical properties of polymer under constant stress 

conditions. 1 is load, 2 is varying arm pulley, 3 is 

transmiting block, 4 is sample, 5 is two radii disc, 6 is 

light source, 7 is linearly variable neutral density filter, 8 

is photo diode, 9 is interface, 10 is computer. 

 

For each load (1), varying arm pulley (2) provides a 

constant mechanical stress. Disk with two radiuses (5) 

permits increase deformation scales by a ratio of radiuses 

of disks (5) and (3). Linearly variable neutral density filter 

(LVNDF) fastened to the disk (5) provides optical 

detection of the sample deformation. The filter is 

compensated with an appropriate extra load that is not 

shown in the figure for simplicity. The vertical position of 

LVNDF and, therefore, deformation of the sample are 

determined by light intensity on a photodiode. Thus, the 

sample fixed by clams undergoes deformation under 
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constant mechanical stress condition. Deformation rotates 

the disk (5) counter clockwise that lifts up the LVDNF.   

Consequently, light intensity passed via LVDNF and, 

therefore, output voltage of the diode is decreased. The 

method provides an accurate measurement of the 

deformation of the samples during the load time and 

under constant stress condition. Deformation values at 

various times are monitored on computer using the home-

built LabView program. Sudden increase of the 

deformation determines the time to rupture (or 

mechanical lifetime) at constant mechanical stress. 

The output values of the photodiode at various 

positions of LVDNF were calibrated with deformation in 

mm (See below). Analytical formula that describes this 

dependence was used in the LabView program to get 

original value for mechanical deformation in mm.  

 

RESULTS AND DISCUSSION 

 

To determine time dependent deformation values, 

time to rupture of the samples under constant mechanical 

stress conditions, the output of photodiode depending on 

vertical position of LVDNF was calibrated. Because of 

optical linear density of LVDNF, this relation possesses 

exponential characteristic.  

 

𝑦 = 𝑦0 − 𝐴 ∙ 𝑒𝑥𝑝  −
𝑥

𝑡
  

 

Dependence of vertical position of on output voltage of 

photodiode is shown in the fig. 2.  

 
 

Fig. 2. Dependence of output voltage of photodiode on 

change vertical position of LVDNF. Solid circles are 

experimental data. Solid curve represents best fit of 

the experimental data to the exponential formula. 

 

Data could be fit very well to the exponential 

formula with following parameters with, y0 = -0.49,         

A = 4.12, and    t = 10.07 

This formula with the best fit parameters shown 

above was incorporated into the LabView program to 

show deformation in mm.  

Dependences of the deformations of the silk threads 

on time at various constant mechanical stress values are 

shown in the fig. 3.  Sudden increase in deformation 

indicates the rupture of the silk thread. The deformation 

values do not depend on mechanical stress values. 

Besides that, very little changes in deformation values 

were observed during the lifetime of the samples. 

However, it is clear that the time to the rupture increases 

significantly in decreased mechanical stress values.  

 
 

Fig. 3. Dependence of durability on mechanical stress for silk     

           threads of 10 mm.  

 

Consistent with other polymeric materials, 

logarithmic dependence is observed for the time to 

rupture and mechanical stress values (fig. 4).   

 

 
Fig. 4. Dependence of mechanical stress on durability (time to 

rupture). 

 

This logarithmic dependence indicates that 

mechanical rupture is a process of Arrhenius type, goes 

through the energy of activation. This type of dependence 

observed for many polymeric materials has led to a 

formulation of thermo-fluctuation mechanism of 

destruction. At constant temperature, the dependence of 

time to rupture (τ) on applied constant mechanical stress 

(σ) is given as below  [5] : 

 

                              = 𝐴𝑒−𝛼𝜎                                     (1) 

 

where, A and α - constant parameters. The Arrhenius 

nature of the formula (1) can be understood by the 

following consideration. Dependence of time to rupture 

on temperature at a given constant mechanical stress 

value is described by following equation [5,6]: 
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                          = 0𝑒𝑥𝑝  
𝑈

𝑘𝑇
                                (2) 

 

𝑈 is an activation energy at constant mechanical stress 

values that can be described as  

 

                            𝑈 = 𝑈0 −                            (3) 
 

Thus, mechanical stress (σ) decreases the activation 

energy U0. It follows that  
 

                         = 0𝑒𝑥𝑝  
𝑈0−

𝑘𝑇
                         (4) 

 

where,  is coefficient that depends on identity of the 

sample, 𝑘 is the Boltzmann constant. 

It can be easily recognized that the formulas (1) and 

(4) are equivalent via following definitions [5]: 
 

                                𝐴 = 0𝑒𝑥𝑝
𝑈0

 𝑘𝑇
                       (5) 

 

𝛼 =
𝛾

𝑘𝑇
                                     (6) 

 

Thus mechanical rupture can be understood as thermal 

process. In thermal fluctuation, the molecules, the thermal 

energies of which are higher than (U0-γσ) will be 

ruptured. Mechanical stress (σ) just decreases the 

activation energy. The slop values of the graphs (fig. 4) 

indicate reveal structural information. Relatively higher 

value of 0.024 found for silk 1 (black data) compared to 

0.019 of silk 2 (red data) indicates that mechanical stress 

more effectively decreases the energy of activation for 

mechanical rupture. The silk 2 can take higher stress 

value for one second 834 MPa versus 714 MPa, which 

indicates more mechanical strength (fig. 4). Thus, the 

device clearly can characterize mechanical-structural 

properties of various polymeric materials. 

 

CONCLUSION 

A computerized device described above is suitable 

to measure time-dependent mechanical properties of 

polymers. Optical detection used in the system 

significantly increases both precision and accuracy of the 

measurements. Data registration time can be as low as       

1 millisecond. 

   

__________________________________ 
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Temperature-dependent photoluminescence measurements and internal quantum efficiency of InGaN/(In)GaN multiple-

quantum-well heterojunctions grown on (11-22) GaN/sapphire templates were investigated. The internal quantum efficiency of the 

InGaN quantum wells were calculated according to the temperature-dependent photoluminescence and ABC model. 

 

Кeywords: Quantum wells, semipolar (11-22) InGaN, internal quantum efficiency (IQE), ABC model.                    
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1. INTRODUCTION  

 

InGaN/GaN multiple-quantum-well (MQW) based 

light emittingdiodes (LEDs) and laser diodes (LDs) attract 

intense interests the performance of nitride based UV and 

visible LEDs and LDs [1, 2]. However, c-plane InGaN 

based QW LEDs suffer from the reduction in efficiency at 

high operating current density, i.e., “efficiency drop”     

[3–9]. Various possible explanations were proposed as the 

mechanism for the efficiency droop in high power nitride 

LEDs as follows: 1) decreased carrier localization at In-

rich regions at high injection densities [1]; 2) carrier 

leakage [3]; 3) electron leakage [4]; 4) large Auger 

recombination at high carrier density [5, 6]; and 5) 

junction heating [7]. Specifically, the employment of thin 

layer of large bandgap material has been reported to have 

the potential of carrier leakage suppression and thus 

enhancement of IQE at high current density [8]. All this 

theoretical analysis have shown that the lattice-matched 

InGaN is the optimal material candidate for this thin 

barrier layer attributed to largest bandgap material 

available with lattice-matching to GaN. In the present 

work, we determine the IQE of GaInN/GaN MQWs in 

photoluminescence (PL) measurements; from the 

dependence of integrated PL intensity on excitation power 

and temperature dependent relative  measurements [9-11]. 

 

2. EXPERİMENTS 

 

 The MOVPE growth was done in a commercial  

Aixtron-200/4 RF-S HT reactor using the standard 

precursors ammonia (NH3), trimethylgallium (TMGa), 

trimethylaluminum (TMAl), trimethylindium (TMIn) and 

triethylgallium (TEGa).On the top of the (11-22) oriented 

GaN template,  2.8 nm thick InGaN quantum wells were 

grown at a temperature of about 720°C. The growth 

temperature for the 8 nm thick GaN barriers was 755°C 

[12]. 

 

3. METHODS AND RESULTS  
 

Temperature dependent PL measurement have been 

calculated  from low temperature to room temperature 

(14-300K) and the dominant wavelength was ~500 nm 

(fig.1,2). In comparison to the sample 

In0.15Ga0.85N/In0.01Ga0.99N with the In0.2Ga0.8N/GaN, a 

considerable higher PL intensity was observable at the 

low temperature and at 300K temperature this difference 

was lower. (fig.3). According to this PL measurements 

the IQE have been calculated by using a Eq.1 [15]. 

 

                  𝐼𝑄𝐸 =
𝐼𝑃𝑙  (𝑇𝐾)

𝐼𝑃𝑙 (14𝐾)
                             (1) 

 

where, IPL is the PL intensity.  

It was observed that at the low temperatures (11-22) 

In0.15Ga0.85N/In0.01Ga0.99N QWs demonstrated a higher 

IQE to compare with the (11-22) In0.2Ga0.8N/GaN QWs. 

For instance at 100K the IQE of In0.15Ga0.85N/In0.01Ga0.99N 

QWs and In0.2Ga0.8N/GaN QWs were 78% and 64% 

respectively (Fig.4). However, it can be easily seen that at 

the room temperature the IQE shows a higher value for 

In0.2Ga0.8N/GaN QWs in comparison with 

In0.15Ga0.85N/In0.01Ga0.99N QWs, 20% and 

18%respectively (fig.3,4). 

Next, we present a theoretical ABC model. 

According to the well-known ABC model, there are three 

main carrier-recombination mechanisms in a bulk 

semiconductor are Shockley–Read–Hall non-radiative 

recombination, expressed as An, bimolecular radiative 

recombination Bn
2
, and Auger non-radiative 

recombination Cn
3
, where A, B, and Care the proportional 

to n, n
2
 and n

3
, respectively, with n representing the 

carrier concentration [13]. 

Then, the IQE can be expressed as 

 

                    𝐼𝑄𝐸 =
𝐵𝑛2

𝐴𝑛+𝐵𝑛2+𝐶𝑛3
                            (2) 
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Fig. 1. The PL measurements of (11-22) 

            In0.2Ga0.8N/GaN QWs.  

   

 

 
  

Fig. 2. The PL measurement of (11-22)  

            In0.15Ga0.85N/In0.01Ga0.99N QWs. 

 

 

 
 

Fig. 3. The dependence of integrated PL intensity on  

            temperature of (11-22) In0.15Ga0.85N/In0.01Ga0.99N  

            QWs and In0.2Ga0.8N/GaN QWs. 

 

 
 

Fig. 4. The IQE of (11-22) In0.15Ga0.85N/In0.01Ga0.99N    

            QWs and In0.2Ga0.8N/GaN quantum wells at  

            different temperature. 

  

The ratio of the integrated PL intensity IPL and the 

power of the excitation source power PPL is proportional 

to the IQE: 

 

                    
𝐼𝑃𝐿

    𝑃𝑃𝐿
= 𝜂1

𝐵𝑛2

𝐴𝑛+𝐵𝑛2+𝐶𝑛3                     (3) 

 

with η1 denoting an unknown constant. The carrier 

generation rate G is proportional to the power of the 

excitation source. In steady state, the carrier generation 

rate is equal to the recombination rate, G = R and the IQE 

at steady state can be expressed as: 

 

     𝐺 = 𝑅 =  𝐴𝑛 + 𝐵𝑛2 + 𝐶𝑛3 or G=η2PPL         (4) 

 

                                𝐼𝑄𝐸 =
𝐵𝑛2

𝐺
                                 (5) 

 

with η2 denoting an other unknown constant, the 

integrated PL intensity can be expressed as: 

 

                               𝐼𝑃𝐿 = 𝜂2𝐵𝑛
2                             (6) 

 

where η is a constant determined by the volume of the 

excited active region and the total collection efficiency of 

luminescence[14]. Combing Eq.3, 4, 5 and Eq.6, one can 

derive the relation between the parameters IPL and PPL as 

below[16]: 
 

𝑃𝑃𝐿 = 𝐴 
1

𝐵𝜂1𝜂2
 𝐼𝑃𝐿 +

1

𝜂1
𝐼𝑝𝐿 + 𝐶 

𝜂2

𝐵3𝜂1
3 ( 𝐼𝑃𝐿)3  (7) 

 

PPL is a cubic polynomial function of  𝐼𝑃𝐿  with the 

constant term to be zero. By applying again a polynomial 

fit to the curve of PPL versus   𝐼𝑃𝐿 , one obtains the value 

of as the coefficient of the quadratic term with which the 

absolute value of  
1

𝜂1
  𝑎𝑛𝑑 the IQE can be calculated 

according to Eq.2.  
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The PL intensity of QWs are increased with 

increasing excitation source power  (fig. 5). The IQE was 

obtained of (11-22) In0.2Ga0.8N/GaN QWs and (11-22) 

In0.15Ga0.85N/In0.01Ga0.99N QWs. At lower excitation 

power, it gets increased by 20 percentage points and 

reaches almost 100 %. Whereas the semi-polar 

InGaN/GaN layers show a constant IQE at higher 

excitation power, the efficiency of the InGaN/InGaN 

sample seems to decrease again (fig 6). 

 

 
 

Fig. 5. The dependence of integrated PL intensity on  

            temperature of (11-22) In0.15Ga0.85N/In0.01Ga0.99N  

            (black) QWs and In0.2Ga0.8N/GaN QWs (red). 

 

 
 

Fig. 6. The IQE at different excitation power. 

 

4. CONCLUSION 

 

Semi-polar (11-22) InGaN/(In)GaN QWs were 

grown with 5 period 2.8nm InGaN QWs and 8nm 

barriers. According to the temperature dependent PL 

measurements it was observed that at the low 

temperatures (11-22) In0.15Ga0.85N/In0.01Ga0.99N QWs 

demonstrated a higher IQE to compare with the (11-22) 

In0.2Ga0.8N/GaN QWs. Using the ABC model the IQE 

was obtain of both samples. At lower excitation power, it 

gets increased by 20 percentage points and reaches almost 

100 %. Whereas the semi-polar InGaN/GaN layers show 

a constant IQE at higher excitation power, the efficiency 

of the InGaN/InGaN sample seems to decrease again. 

_______________________________ 
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