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The group element solutions of the principal chiral field problem are constructed by means of discrete symmetry transformations for the 

algebra SL(3,C).  
 
1. The problem of constructing the exact solutions of nonlinear evolution equations in the explicit form remains important 

for the present time. Among these so called integrable system the four dimensional self-dual Yang Mills (SDYM) equations 
plays the central role being the universal integrable system from which the systems in lower than four dimensions can be 
obtained by symmetry reduction or by imposing constrains on Yang Mills potentials.  The problem of integration of SDYM 
has successfully solved only for the case of SL(2,C) algebra and for instanton number not greater than two. The famous 
ADHM ansatz [1] gives the qualitative description of instanton solution but not its explicit form. Two effective methods of 
integration of SDYM for arbitrary semisimple algebra have been proposed in series of papers [2].  Another, the discrete 
symmetry transformation approach has been suggested [3] that allows to generate new solutions from the old ones. This 
method has been applied to many cases, for instance, the exact solutions of principal chiral field problem were obtained in [4] 
for the case of SL(2,C) algebra and in  [5] for SL(3,C) and the rest semisimple algebras of the rank greater than two.                               

This work must be considered as a continuation of the paper [5]. The purpose of the present paper is to do the same for the 
group-valued element what is important for applications. 

2.  Let us remind the basic statements from [5]. 
Equations of the principal chiral field problem are the systems of equations for the element f , taking values in the 

semisimple algebra, 
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In the case of  two-dimensional space: 1θ =1, 2θ =-1, ξ=1x , ν=2x .  

For the case of a semisimple Lie algebra and for an element f being a solution of (1), the following statement takes 
place: 

 There exists such an element S taking values in a gauge group that  
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Here +

MX  is the element of the algebra corresponding to its maximal root divided by its norm, i.e., 
 

[ ] [ ] ±±−+ ±== X2X,H,HX,XM      , 
 
−− f~  - is the coefficient function in the decomposition of f~  of the element corresponding to the minimal root of the algebra, 

1ff~ −= σσ  and where σ is an automorfism of the algebra, changing the positive and negative roots. 
In the case of algebra SL(3,C) we’ll consider the case of three dimensional representation of algebra and the following   
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The discrete symmetry transformation, producing new solutions from the known ones, is as follows:  
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Using the equations of the principal chiral field problem for the group-valued element 
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 the relations (3) can be rewritten as 
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So we see that the group valued elements gn+1 and gn are connected by the relation 
 
                                                                                nn1n gSg σ=+                                                                                   (6) 
 
3. Let's represent the explicit formulae of the recurrent procedure of obtaining the group-valued element solutions of the 

self-duality equations in the case of SL(3,C) algebra . 
At every step, as it shown in [5], S is upper triangular matrix and can be represented in the following form: 
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where H=h1+h2 and for gn we use the following parameterization: 
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with 

( ) ( ) ( ) ( ) ( )( )2021012022,102,11010 hthtexpXexpXexpXexpg += ++++++ ηηη  
 

as an initial solution. 
Hereafter, ±±±

2,121 X,X,X ,h1,h2 are the generators of SL(3,C) algebra. 
Following the general scheme from [5] and using (2)  we have at 
(0)-step: 
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 (2)-step: 
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1 ,, ααα  - chains of solutions of principle chiral field problem determined by formulae (9-12) from [5]. 
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The chemical kinetic model is investigated to determine the condition under which a substrate inhibition and enzyme isomerization can 

lead to biochemical oscillation. A kinetic model for the two-center enzyme which under certain conditions allows the existence of oscillatory 
behavior is suggested. The main kinetic requirements for the existence of oscillatory regimes in biochemical reaction systems are 
distinguished.  
 
Key words: enzyme oscillations  
 

INTRODUCTION 
 
Oscillatory behavior has been observed in many enzyme 

reaction systems [1]. Many investigators of biochemical 
oscillations believe that its chemical kinetic source has been 
generally attributed to an autocatalytic reaction mechanism. 
Even there is an opinion of necessity of autocatalysis for the 
oscillatory phenomena in enzyme reaction systems [2]. On 
the other hand, in number of studies it is suggested that 
substrate inhibition kinetics can also be a source of 
oscillatory behavior in chemical systems, particularly enzyme 
reactions. Spangler and Snell [3,4] studied a two-enzyme 
model system in which the product of one enzyme-catalyzed 
reaction acts as inhibitor for the other enzyme. This two-
enzyme model was shown to exhibit bistability and sustained 
oscillations. Sel’kov [5] investigated a single enzyme model 
involving both substrate inhibition and product activation and 
observed oscillatory phenomena. The oscillations observed 
were attributed to the substrate inhibition kinetics, but no 
proof of this assertion was given. Seelig [6] investigated a 
model involving a single enzyme with substrate inhibition 
kinetics only (no product activation) and observed 
oscillations. However, this model involves two substrates, 
only one of which is an inhibitor. It is not clear whether the 
existence of multiple substrates is the necessary condition for 
oscillatory behavior in a system governed by substrate 
inhibition. Goldstein and Ivanova [7] considered a model of 
enzyme reaction system with both substrate inhibition and the 
enzyme isomerization and observed oscillatory phenomena. 
This model involves the double substrate inhibition, i.e. the 
substrate inhibits two conformational changed (isomerized) 
enzyme forms.  Shen and Larter [8] investigated a model 
involving substrate inhibition and autocatalysis. Their 
investigation shows that though oscillatory behavior is 
observed in this system, it is caused by either autocatalytic 
properties of the mechanism or substrate inhibition coupled 
with product inhibition. They concluded that only substrate 
inhibition is insufficient for oscillatory phenomena in this 
mechanism. Several examples exit in the literature [9,10,11], 
but they comprise only evidence of sufficient conditions for 
oscillatory behavior, but which are not necessary. As it is 
obvious from the mentioned above, the autocatalysis 
mechanism is not necessary condition for the oscillatory 
phenomena in biochemical reaction networks, as well. Then 
the principle question arises about necessity of additional 

conditions for oscillations in chemical reaction systems, 
particularly enzyme reactions. In this paper we show that (1) 
neither autocatalysis, nor any other concrete reaction 
mechanism or its combinations (such as, substrate inhibition, 
product inhibition etc.) is not necessary condition for the 
oscillations; (2) for the oscillation phenomena it is necessary 
the existence of so called “critical reaction fragments”.                             

 
THE METHOD OF ANALYSIS 
 
Our analysis of non-linear kinetics of chemical reaction 

networks was carried out on the base of double-barrel graph 
theory [12,13,14]. The method connects structure of the 
kinetic schemes with the critical phenomena arising in it 
(multiplicity of stationary states, self-oscillations). It is 
known, that the kinetic behavior of system is determined by a 
characteristic polynomial of linearized systems of the kinetic 
equations: 

                                               
    m

2n
2

1n
1

n a...aaP ++++= −− λλλ            (1)  
 
If in a stationary state even one of the coefficients in (1) 

has a negative sign this state becomes unstable and in the 
system there can be multiple steady states or self-oscillations. 
Ivanova [12] proved, that if the lower non-zero coefficient 
(am) was negative and there were no steady-state points at the 
border of the polyhedron of invariance determined by the 
material balance equations in the phase space, then there 
should be several steady-state points inside the polyhedron 
(multiple steady-states).   

If am>0 at any concentration, then there is a single steady-
state point (if the boundary conditions are fulfilled). In this 
case, if another coefficient am-k<0, then a single steady-state 
point can be unstable. A stable limited cycle i.e. self-
oscillations occurs in the vicinity of this single unstable 
steady-state point.  

This means that oscillations can arise if in the graph of 
common reaction network there is a critical fragment of 
lower order. This allows searching for the reason of 
oscillations in critical fragments of the lowered order. Such 
fragments in various reaction mechanisms can arise. They 
may be both autocatalytic and non-autocatalytic mechanisms, 
although, the number of such reaction mechanism is not large 
[15]. Therefore this shows, that neither autocatalysis, nor any 
other concrete reaction mechanism or its combinations is not 
the necessary condition for the oscillation phenomena.  
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 The existence of lowered order of critical subgraph 
(reaction fragment) is the  necessary condition, but un-
sufficient for the arising of oscillatory behavior. Our 
structural-kinetic analysis allows us to support some 
additional requirements, which can lead to sustained 
oscillations. (1) From our careful study of the oscillatory 
kinetic models we have shown that the presence of the flow 
terms for the substrate (and/or other non-balanced 
compounds) is crucial for oscillatory behavior. (2) The rates 
of reaction stages, which consist of the critical fragment, 
could be sufficiently larger than the other reaction rates. In 
this case, if the sum of contributions of high-ordered 
subgrpahs remains positively, then oscillatory behavior is 
possible.  

 
 THE ROLE OF THE ENZYME ISOMERIZATION IN 
BIOCHEMICAL OSCILLATIONS   

 
It is well-known, that enzymes in a solution exist in 

several (usually in two) isomerized forms [16]. Transitions 
between the conformers have essential significance for the 
oscillation behavior. Conformers of the enzyme, as a rule, 
have various affinities to substrate. In solutions these enzyme 
conformers interact with one substrate and thus  create 
competition between these two forms of enzyme. It leads to 
the occurrence in the graph of two negative ways sequence, 
which enters into an even cycle and together with catalytic 
cycle forms the critical fragment. Thus there is an 
opportunity for existence of an oscillatory mode. To illustrate 
the role of enzyme isomerization in oscillation phenomena 
we had chosen the Guinoprotein Glucose Dehydrogenase 
enzyme (GDH), as an example. Experimental data show the 
biphasic cooperativity containing two sets of apparent kinetic 
parameters. The data allow to suggest, that GDH have two 
subunits in the two states of mutual interactions and the two 
catalytic cycles of GDH have different rate limiting steps 
[17]. Summarizing the literary data it is possible to present 
the basic scheme of reactions, catalyzed by the GDH, as 
follows: 

 
1. E + A→EA;  EA + S → EAS;  EAS→ EBP;  
    EBP→ E*B+P;  E*B→ E* + B; 
2. E + S ↔ ES 
3. E*→ E 
4. E*+ A→E*A;  E*A + S → E*AS;  E*AS→ E*BP;     
    E*BP→ E*B+P; E*B→ E*+B. 
 

Here Е and Е* are the different isomerized forms of free 
enzyme, A is the coenzyme,  S is the substrate, B is the 
oxidized coenzyme and  P is the product. As in other 
dehydrogenase reactions, in this scheme the linkage stage of 
a substrate to enzyme-coenzyme complex and the stage of 
isomerization of enzyme are rate limiting stages [16,17]. 
Stopping at slow stages of the reaction catalyzed by GDH, it 
is possible to present reaction in the following sequence: the 
substrate (S) contacts with the first catalytic center of enzyme 
(E). The first catalytic act occurs and enzyme passes to 
another isomerized form (E*) at which catalytic center of the 
second subunits becomes accessible for the substrate. It is a 
new isomerized form of enzyme, which has other affinity to a 
substrate, and is catalytic active, too. It can form active 
enzyme - substrate complex (E*АS) and create a product (P). 

As well the conformation transition of the second isomerized 
form of enzyme into the first can be occurred (E*→E). Thus, 
as a result of two catalytic acts in the system there will be a 
biphase accumulation of a product with different parameters. 
Besides, this scheme permits the substrate inhibition: one can 
assume, that it occurs at linkage of the substrate to the second 
active center in the first conformation of enzyme and forms 
the inactive enzyme-substrate complex (ES), which is in a 
good agreement with experimental data [16]. Thus, stopping 
at slowly-stages, it can be written: 

1.  E +A+S →1
 E* + B+P;  

2.  E* →2
 E;  

3.  E*+ A + S →3
 E*AS 

4.  E + S →4  ES  

5.  E*AS →5
 E*+B+P 

6. ES →6  E + S 
  
Consider a possibility of the arising of oscillation 

behavior in the suggested scheme of reaction. Five variable 
concentrations participate in the system. We shall denote 
their dimensionless quantities as: 

 
c1=S/S0, c2=E*/E0, c3=E/E0, c4=ES/E0, c5=E*S/E0, 

 
there, S0  is the stationary concentration of the substrate, E0  is 
the total concentration of enzyme (the sum of all enzyme and 
enzyme complexes). These variables are connected with a 
balance ratio:  

 
                  c2+ c3+ c4+ c5=1 
 
Hence, only four variables are independent and therefore, 

the characteristic polynomial of system will be of the 4-th 
order: 

 
        43

2
2

3
1

4 aaaaP ++++= λλλλ               (2) 
 
The sign of smallest nonzero coefficient а4 of the 

characteristic polynomial for the given system is determined 
by the critical fragment of the 4-th order. If а4 >0 for any сi  
in invariant area, i.e. in area  where  
 

сi >0, c2+ c3+ c4+ c5=1, c1≤ cmax, 
 
 then the stationary point is unique. Thus it is taken into 
account, that on a border of invariant polyhedron there are no 
stationary points. If, besides the inequality а3 <0  in a unique 
point, then this unique stationary point is unstable and is 
carried out  around this point there is a steady limited cycle. 

Stationary rates of reactions are connected by means of 
the following equality: 

 
υ1=υ2, υ3=υ5, υ4=υ6, υ0=υ1+υ3. 

    
Thus, from 12 stationary rates and concentrations seven 

are independent. Using a method of calculation of the 
characteristic polynomial coefficients [13,14] we obtain the 
expressions for the coefficients of characteristic polynomial 
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а1, а2, а3 and а4. The coefficients а1 and а2 are positive for 
any positive values of independent variables. An analysis of 
expression for а3 shows, that in the field of self-oscillations 
the quantities υ4=υ6   should be small enough. Therefore 
neglecting the members containing υ4 and υ6  in the 
expression for а3  one obtains more simple expression for а3 
as:   

 

{ })2()( 325532
5321

52
3 cccc

cccc
a ++−= υυ

υυ
 

 

Fig.1. A time dependence of relative concentrations of the  
          reaction scheme, considered above: A) substrate  
          concentration (c1); B) Free enzyme concentration  
          (c2); C) concentration of isomerized enzyme (c3); D)  
          concentration of E*AS (c5). Curves are obtained for  
          the following values of relative concentrations and  
          rate constants: c1 =1, c2=0.024, c3 = 0.002, c5=0.15,  
         k1=200, k2=200, k3=40, k4=0.001, k5=300, k6=0.4. 
 
From this expression it is seen, that for occurrence of 

oscillations it is necessary, that с3 < с5. Therefore we shall 
consider below the area of concentration value, where this 
condition is satisfied. The expression for the coefficient а4 
has the form:  

 

{ })2()( 4325532
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4 сcccc

cсccc
a +++−= υυ

υυυ
 

For existence of self-oscillations, it is enough, that  
 
                      )cc()c2c( 352325 −<+ υυ  

                      )cc()cc2c( 3524325 −>++ υυ  
 
It is possible to combine these inequalities and as a  
 

result a sufficient condition for self-oscillations is obtained in 
a final form:  

 

35

4

5

2

cc
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υ

 

 
If this condition is not fulfilled in the system there will be 

no self-oscillations, and there will be places of bistability in 
considered reaction system. Results of numerical 
calculations, which lead to non-damping self-oscillations, are 
shown in figure 1. 

 
CONCLUSION 
 
We have continued a study of substrate inhibition scheme 

originally done by Degn [19] to determine whether 
oscillatory behavior can be supported by it. Our calculation 
shows, that oscillatory behavior cannot be sustained only by 
such a mechanism. The application of double barrel graph 
theory allows us to support the main requirements, which 
lead to oscillation behavior: For the existence of oscillations 
in the system consisting of n reagents, at least m-order critical 
fragments must be: m=n-f-1. Here f is the number of the 
balance equations (i.e., the number of mass conservation 
laws). On the other hand we conclude, that the presence of 
the flow terms for the non-balanced reagents is necessary for 
the oscillation phenomena. Our third requirement is the 
existence of considerable difference of reaction rates between 
critical and non-critical fragments of common reaction 
networks. Obtained results also allow to predict from a 
general class of enzymes those that may be good candidates 
for the generation of oscillatory behavior. We find that 
soluble two-center dehydrogenases can lead to oscillations. 
Our model studies of oscillatory conditions for the two-center 
in the presence of substrate inhibition and the conformation 
transition may be a convenient basis for the investigation of 
more complex oscillatory events in biology. For example, in 
[20] it have been found that glucose stimulation of pancreatic 
β cells induces oscillations of the membrane potential, 
cytosolie Ca2+, and insulin secretion. Each of those events 
depends on glucose metabolism. Both intrinsic oscillations of 
metabolism and repetitive activation of mitochondrial 
dehydrogenases by Ca2+ have been suggested by authors to 
decisive for this oscillatory behavior. 
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СУБСТРАТ ИНЩИБИРЯСИНИН ВЯ ФЕРМЕНТ ИЗОМЕРИЗАСИЙАСЫНЫН БИОКИМЙЯВИ  РЯГСЛЯРИН 

КИНЕТИКАСЫНДА РОЛУ 
  

Биокимйяви рягслярин йаранма шяртлярини тяйин етмяк цчцн, субстрат инщибиряси вя фермент изомеризасийасы олан ферментатив 
реаксийаларын кимйяви моделляринин кинетикасы тядгиг едилмишдир. Периодик ахымын мювжудлуьуна имкан верян, ики-мяркязли фермент 
реаксийасы модели тяклиф едилмишдир. Биокимйяви реаксийа системляриндя периодик реъимлярин мювжудлуьу цчцн ясас  кинетик тялябляр 
айарланмышдыр. 

 
Ш.К. Байрамов  

 
РОЛИ СУБСТРАТНОГО ИНГИБИРОВАНИЯ И ИЗОМЕРИЗАЦИИ ФЕРМЕНТА В КИНЕТИКЕ 

БИОХИМИЧЕСКИХ КОЛЕБАНИЙ 
 

Для определения условия возникновения биохимических колебаний исследована кинетика химической модели ферментативной 
реакции с изомеризацией фермента и субстратным ингибированием,  Предложена кинетическая модель реакции двух-центрового 
фермента, которая позволяет существование колебательного поведения. Выделены основные кинетические требования для 
существования колебательных режимов в биохимических реакционных системах.    
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 It is shown that TlInS2 crystals doped by Fe show all peculiarities that are typical to the relaxor ferroelectrics. The temperature 
region of the microdomain (relaxor) state as well as the temperature of the transition to the macrodomain state have been determined.  
 

The analysis of temperature dependences of the dielectric 
constant ε(T) in the phase transitions region of TlInS2 crystal 
showed that it has a different form for the samples that were 
taken from various technological batches. Authors of [1] 
determined that the different form of ε(T) curves is connected 
with the fact that TlInS2 crystal belongs to the class of 
compounds (berthollides) in which the rearrangement of 
composition occurs during the growth process.  However this 
peculiarity does not lead to the smearing of the phase 
transitions and the dependence ε-1(T) obeys Curie-Weise law 
with the constant approximately equal to 10-3 beginning from 
the submillimetric spectral regions up to the measurements of 
ε(T) in the kilohertz region [2, 3]. It was established by the 
neutron-diffraction research that TlInS2 compound is an 
improper ferroelectric with an incommensurate phase [4]. 

The temperature region, in which instability of TlInS2 
crystal lattice is observed is a very sensitive to the trivalent 
cationic impurities that have different ionic radii and the 
coordination numbers.  Moreover, the increase of phase 
transition temperatures is observed for some impurities while 
the decrease of phase transition temperatures is observed for 
others impurities (the results of this research are in 
preparation for publication). There is an interest to investigate 
the nature of these processes in TlInS2 crystals. The transition 
metals of iron group being the multicharged impure ions can 
form the deep centers of strong localization that capable to 
the strong interaction with high-polarizable TlInS2 crystal lattice. 

The investigation results of dielectric, polarization and 
pyroelectric properties of TlInS2<Fe> crystals are given in this 
paper. 

 

EXPERIMENTAL TECHNIQUE. 
 

TlInS2 crystals have been grown by Bridgman-
Stockbarger modified method. The anisotropy of dielectric 
properties in the plane of layer is not observed. The 
measurements have been carried out from the crystal faces 
cut out perpendicular to the polar axis. The crystal faces have 
been planished, polished and then covered by a silver paste. 
The dielectric constant ε and the dielectric loss tangent tgδ 
have been measured by the alternating current bridge E7-8 at 
the frequency 1 kHz and E7-12 at the frequency 1 MHz in the 
temperature region 150 - 250K. The velocity of temperature 
scanning was equal to 0.1 K/min. The dielectric-hysteresis 
loops were studied at the frequency 50 Hz by Soyer-Tauer 

modified scheme. The pyroeffect has been investigated by the 
quasistatic method using universal voltmeter V7-30. 

 

RESULTS AND DISCUSSION. 
 

The temperature dependence of the dielectric constant 
ε(Т) of both TlInS2 (curves 1, 2) and TlInS2<Fe> crystals 
(curves 3, 4, 5) in the cooling (curves 1, 3, 5) and heating 
regimes (curves 2, 4) are shown in figure 1. The 
measurement frequency to the curves 1, 2, 3 and 4 is equal to 
1 kHz. The curve number 5 presents the results of 
measurement of ε(Т) to TlInS2<Fe> crystal at the frequency 1 
MHz. As it is seen from figure 1, the known sequence of the 
phase transitions [3] is observed to TlInS2 crystals (curves 1, 
2). It is observed also the transitions from the paraelectric to 
the commensurate phase at 216K, as well as two transitions at 
204 and 200K. The nature of these transitions was widely 
discussed in [5] and most likely it is connected with 
rearrangement of the modulated structure. The final transition 
to the polar phase occurs at 196K. 

 
Fig.1. The temperature dependences of the dielectric constant  
           ε(Т). Curves 1, 2  - the dependences ε(Т) of TlInS2crystal  
           (1 - cooling; 2 - heating); Curves 3, 4, 5 - the   dependences  
           ε(Т) of TlInS2<Fe> crystal (3, 5 - cooling; 4 - heating).  
           The measurement frequencies are 1 kHz (to the curves 1,  
            2, 3 and 4) and 1MHz (to the curve 5). 
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The dependence ε(Т) is described by Curie-Weis law with 
Curie constant C+=5.3·103K in the temperature region T-
T1(216)≤500. The anomaly at 196K appears during the crystal 
cooling and all peaks are strongly pronounced without the 
signatures of the smearing. As it is obvious from figure, the 
dielectric hysteresis for TlInS2 crystals is observed only at the 
temperature about 196K, while the hysteresis to the doped 
samples at the temperature Tm (it is a maximum temperature 
of ε(Т) curve) is about 2K (curves 3 and 4 in fig.1). 

The nature of the dielectric constant in the same 
temperature region for (TlInS2)1-x(Fe)x crystals, where x = 
0.001, is essentially distinctive namely the dependence  ε(Т)  
is strongly blurred. The displacement of phase transitions to 
the low temperature region in 10K and the widening of 
region of existence of the incommensurate phase with 
conservation of two anomalies at 190K and 290K have been 
observed. In this case the natural question arises regarding 
the reason of such radical rearrangement of the dependence 
ε(Т) at doping 0.1-mol % of Fe.  

As it is known, the composition fluctuation is a main 
reason of the smearing of phase transition temperatures [6, 7].  
However, not any increasing in the defect concentration can 
be a reason to the smearing. According to [8] the defects 
having dipole moments are the reasons for such smearing and 
these defects create the electric fields in adjoining crystal 
regions. Besides as TlInS2 is a semiconductor, the doping of 
impurities creates the corresponding centers of charge carrier 
localization, which can create the local electric fields that 
stimulate the initiation of the induced polarization near the 
phase transitions [9-11]. Important peculiarity of the 
ferroelectrics with smearing phase transitions is the fact that 
the dielectric polarization higher than Tm changes not by 
Curie-Weis law (ε’)-1= C-1(T-T0) and by the law (ε’)-1=A+B(T- T0)2. 

 

 
Fig. 2. The dependence ε-1/2to TlInS2<Fe> crystal. The measurements  
           are carried out at the frequency 1MHz.The dielectric- 
           hysteresis loops to TlInS2<Fe> crystal are given in the  
           insertions to the figure: 1 - the measurements are carried  
           out at 180K; 2 - the measurements are carried out at 140K. 
 
The dependence ε-1/2(T) for TlInS2<Fe> is shown in fig. 2. 

This dependence line crosses the temperature axis at 164K 
from the side of high-temperature phase. It corresponds to the 
maximum value of low-temperature pyrocoefficient (fig. 3). 

The investigations of polarization properties of TlInS2<Fe> 
showed that the dielectric-hysteresis loops are observed 
below 164K and the maximum value of spontaneous 
polarization (Ps) for such loops reaches up to 7.5º10-8 
Coulomb/sm2. The value of Ps to the undoped TlInS2 crystals 
is equal to 1.8º10-7 Coulomb/sm2. The value of Ps in the 
temperature region from 164 to 190K is 1.5º10-8 
Coulomb/sm2. The dielectric-hysteresis loops for TlInS2<Fe> 
crystals are given in the insertions to the fig.2. The first 
insertion to the figure reflects the observed loop in the 
temperature region 164 - 190K. As it is obvious from figure 
the loop is narrow and elongated that is a typical to the 
relaxor ferroelectrics. The form of dielectric-hysteresis loop 
below 164K has been given in the second insertion of the 
figure. It is obvious that the loop becomes saturated and it is a 
typical for the ferroelectric.  

The investigations of frequency dispersion have been 
carried out at measurement frequencies f - 1 KHz and 1 MHz. 
The displacement of Tm maximums of ε(Т) curve with 
increasing frequency f in TlInS2 crystals is not observed 
while the displacement of the smearing maximum of ε(Т) to 
TlInS2<Fe> crystals is equal to 3K (figure 1, curves 3 and 5).  

The temperature dependences of the pyroelectric 
coefficient γ(T) for the pure TlInS2 crystal (curve 1) and for 
the doped by Fe (curve 2) are given in the fig.3. The 
measurements were carried out in the quasistatic regime and 
the pyroelectric coefficient was calculated using the 
following equation: γ=J/A0ºdT/dt, where J is a pyroelectric 
current, A0 is an area of electrodes, dT/dt is a heating rate. 
The measurements were carried out using the samples, which 
were preliminary polarized in the external electric field. As it 
is obvious from figure, one peak with maximum value of the 
pyroelectric coefficient 1.4º10-7 Coulomb/Ksm2 in the curve 
γ(T) is observed to the pure TlInS2 crystal at 196K. Two 
anomalies at Tm=190K and T0+164K in the curve γ(T) are 
observed to TlInS2<Fe> crystal. Besides, the weak current is 
observed in the temperature region higher than 190K, i.e. in 
the region of existence of the incommensurate phase.  

 

 
Fig.3. The temperature dependence of the pyroelectric coefficient  
          γ(T). Curve 1- TlInS2 crystal. Curve 2- TlInS2<Fe> crystal. 
 
The analysis of the curves are given in the figures 1-3 

allows to state that TlInS2<Fe> crystals show all peculiarities 



R.M. SARDARLI, O.A. SAMEDOV, I.Sh. SADIGOV, I.I. ASLANOV,  A.P. ABDULLAEV, J.H. JABBAROV 

 12 

that are typical to the relaxation ferroelectrics namely the 
doping of TlInS2 crystal by Fe3+ cations leads to the smearing 
of phase transitions as well as the frequency dispersion of the 
dielectric constant is observed. Moreover, the elongated 
dielectric-hysteresis loop is detected in the region of the 
smearing of phase transition and the temperature dependence 
of the dielectric constant from the side of high-temperature 
phase is described not by Curie-Weis law and according to 
the law (ε’)-1= A + B(T - T0)2. 

The smearing of phase transitions and the peculiarities of 
ferroelectric properties in TlInS2<Fe> crystal are unconditionally 
connected with the structure disorder that leads to the 
appearance of local distortions of both the symmetry and 
internal electric field in the wide temperature region. Despite 
the fact that the investigations of phase transitions in TlInS2 
crystals carried out during long period yet there are no the 
satisfactory understanding physical mechanisms of the 
processes taking place in the crystals and also the 
unambiguous interpretation of the observed phenomena. In 
our opinion it can be connected with the fact that during the 
investigations of phase transitions in TlInS2 crystals not 
enough attention was given to the semiconductor properties 
of these crystals. Especially it concerns the crystals which are 
doped by the cationic impurities. These impurities can form 
the capture levels (traps) at the bottom of the conduction 
band. Here it is necessary to take into consideration both the 
processes of charge carrier localization on the local centers 
and their influence on the phase transitions. This issue has 
been considered in detail by Mamin in [9-11], where it was 
shown that the thermal filling of traps could lead to the 
intricate sequence of phase transitions as well as the 
appearance of unstable boundary state between the 
(incommensurate-commensurate) phases. 

As it is seen in the curve γ(T) at 164K the peak, which is  

not shown in the dependence ε(Т) (please compare fig.1and 
3) is observed. According to [11] this peculiarity is a typical 
for the relaxors. It is connected with the fact that the 
oscillation frequency of the induced polarization will be 
determined by the characteristic relaxation time not only for 
the lattice subsystem as it has a place in usual ferroelectrics 
but also and the relaxation time of the electronic subsystem. 
Naturally, the characteristic time of change of parameter 
order γ and the characteristic time of electron concentration 
m in the traps strongly differ (τη/τm<<1). It allowed an author 
of [11] to investigate this problem by the separation method 
of fast and slow processes. As a result it has been established 
that effective temperature of the phase transition Tcm will be 
displaced below in the temperature scale due to thermal 
filling of the capture levels. The phase transition to the state 
with spontaneous polarization will occur at the temperature 
Tcm. This temperature corresponds 164K to the crystals 
TlInS2<Fe> (fig.2). As it is seen from figure, below 164K the 
loop becomes saturated. As the localized charges create the 
local electric fields then the spontaneous polarization in the 
weak external fields in the separate microfields will be 
directed to the different directions in compliance with space 
distribution of the localized charges. Therefore, the hysteresis 
loop in the temperature region 164-190K is observed as 
narrow and elongated. Besides, according to the same reason, 
we did not observe the peculiarities in the dependence ε(Т) 
connecting with phase transition at the temperature Tcm.  

Thus, the doping of TlInS2 crystals by Fe leads to the 
appearance of the temperature region in which the crystals 
show all peculiarities that are typical for the relaxors. The 
phase transition from the relaxor (microdomain) to the 
macrodomain (ferroelectric) state occurs at the temperature 
164K. The jump in the temperature dependence γ(T) 
corresponds to this transition. 
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Р.М. Сярдарлы, О.Я. Сямядов, И.Ш. Садыгов, И.И. Асланов, А.П. Абдуллайев, Ж.Щ. Жаббаров 
 

Фе АШГАРЛАНМЫШ ТлЫнС2 БИРЛЯШМЯНИН РЕЛАКСОР ХАССЯЛЯРИ 
  
Мцяййян едилмишдир ки, ТлЫнЫ2 Фе-ла ашгарландыгда, кристалл релаксор сегнетоелектрикляр цчцн характерик олан хассяляр эюстярир. 

Кристалын микродомен (релаксор) щалынын варлыг температур интервалы вя макродомен щалына кечид температуру тя’йин олунмушдур. 
 

Р.М. Сардарлы, О.А. Самедов, И.Ш. Садыхов, И.И. Асланов, А.П. Абдуллаев, Д.Г. Джаббаров 
 

РЕЛАКСОРНЫЕ СВОЙСТВА TlInS2 ЛЕГИРОВАННОГО Fe 
 

Показано, что TlInS2, легированный Fe, проявляет все особенности, характерные для релаксорных сегнетоэлектриков. Установ-
лены температурная область существования микродоменного (релаксорного) состояния и температура перехода в макродоменное 
состояние. 
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Electrophysical and piezoelectric properties of composites on the base of two matrix: polar-polar polar-non-polar and non-polar-non-
polar polymers are investigated. It is experimentally shown that by the elaboration of multiphase composites it is better to use the 
combination of polar and non-polar polymers than that of only non-polar or only polar polymers. 

 
We showed before that electret, piezo- and pyroelectric 

properties of composites depend mainly on conditions of the 
injection and stabilization on various charge capture centers 
in the polymer phase at the electrothermopolarization  [I-3]. 
Various structural defects, heavy-polar, low-molecular 
compounds in the bulk, oxide chains of the macromolecule 
and boundaries between amorphous and crystal phase of 
polymers might enter the charge capture center[1-4].It is 
natural to assume that the value of stabilized charges, which  
determines the degree of the domains orientation in 
composites, depends on the activation energy of stabilization 
centers. 

It is known, that the boundaries of incompatible polymers 
may be effective charge capture centers (4,5). In this respect, 
we used the mixture of two polar and non-polar polymers, in 
particular, PE+PP, PE+PVDF, PP+PVDF as a matrix. 
Composites on the base of two-component matrixes and the 
piezoelectric of various structures are obtained by the method 
of the hot pressing. 

Piezoceramics of the rhombohedral (Rh) and  tetragonal 
(T) structure are used as a piezoelectric phase and PP, HDPE, 
PVDF and F3 as a polymer phase. Electrodes of aluminum 
foil are applied in the process of the hot pressing. 
Temperature-temporary and temperature-pressure regimes of 
crystallization are variated  with the aim of the polymer phase 
receipt with the various supermolecular structures (SMS). 
Sizes of electric phase particles are varied in the interval 
50÷100 µm. Piezoelectric parameters of composites are 
determined by quasi-static methods. 

The matrix compatibility and new phase formation in 
composites are determined by the research of the posistor 
effect. The research of the posistor effect in indicated 
composites allowed to determine the optimal conditions of 
polar composites. 

Value of piezomodulus d33 and composites 
piezosensitivity g33 on the base of two-component matrix 
HDPE+PP, dispersional PCR-11 and PZT-2 versus the 
volume content of HDPE and PP in the matrix are shown in 

the Table I. It is seen, that the polymer composite with the 
volume relationship HDPE to PP, equal to 2:3, has the 
maximal value d33 and g33. 

The dependence of various composites piezomodulus, 
polarized at optimal values of the electric field voltage Eр and 
the polarization temperature Tp on the volume content F of 
the piezoceramics is shown on fig.1. It is seen that the 
piezomodulus value at all filler contents grows at the use as a 
matrix of the mixture HDPE and PP. 

 
Fig.1. Piezomodulus dependence on the bulk content of the  
           Piezoceramics: I- HDPE+PCR-11; II- PP+PCR-11;  
           III- HDPE+PZT-2;IV- PP+PZT-2; V- HDPE+PP+PZT-2;  
           VI- HDPE+PP+PCR-11. 
 
The dependence of d33 on Ep for composites from 

polyolefin and PCR-11 is shown on fig.2,a. The maximal 
value d33 of HDPE+PP+PCR-11 composite is in 2 times more 
than the piezomodulus composite HDPE+PCR-11 and in 1,7 
times more, than the piezomodulus PP+PCR-11. The d33 
composite of HDPE+PP+PZT-2 is approximately in 2 times 
more, than d33 composite on the base of one-component 
matrix of HDPE+PZT-2. 

                                                                                                                                                                        Table 1. 
                           The value of piezomodulus and composite piezosensitivity on the base of the two-component matrix. 

Piezocomposites Volume relationship 
HDPE:PP 

Volume content of 
piezofillers in % 

d33 
pC/N 

g33 
Vm/N 

 

HDPE+PP+PCR-11 

1 : 4 
2 : 3 
3 : 2 
4 : 1 

50 
50 
50 
50 

34,7 
50,3 
33,8 
31,5 

0,14 
0,12 
0,15 
0,13 

 

HDPE+PP+PZT –2 

1 : 4 
2 : 3 
3 : 2 
4 : 1 

50 
50 
50 
50 

19,2 
30,4 
21,6 
17,1 

0,091 
0,145 
0,103 
0,081 
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The research results of the charge state of the indicated 
components show, that at other equal conditions of the 
polarization (at the stability of Ep, Tp and tp is the polarization 
time) the value of stabilized volume charges (Q) in 
composites on the base of the two-component polymer matrix 
is visually more in comparison with the charge value of 
composites on the base of one-component polymer matrix 
(Table 2). 

                                                                                Table 2. 
The charge value on the thermostimulated depolarization (TSD) and 

the composites piezomodulus on the base of one-component and 
two-component matrix. 

 
Composites Q,10-3C/m2 d33, pC/N 
HDPE+PCR – 11 0,65 21 
PP+PCR – 11 0,75 33,6 
PP+HDPE+PCR– 11 1,9 50,6 

 
It is shown that more favorable conditions for the charge 

stabilization are realized in two-component systems. 
Obviously, additional centers of the charge stabilization at the 
electrothermopolarization occurs from non-polar polymers in 
the polymer-ferropiezoelectric system on the base of the 
matrix.  

 

 
Fig.2. The dependence of piezomodulus d33 on the electric field  
           voltage of the polarization Ep.  
           a) I- HDPE+PCR-11; II- PP+PCR-11;  
               III- HDPE+PP+PCR-11;  
          b) I- PP+PCR-I; II- PVDF+PCR-I; III- PP+PVDF+PCR-I. 

The dependence of d33 on Ep for composites as the matrix, 
in which polar polymer PVDF and non-polar polymer PP are 
used, is presented on fig. 2,b. The comparison of optimal 
values d33 versus d33=f(Ep) shows, that in this case the 
piezomodulus increment (∆d33) is more, than for composites 
on the base of the matrix from polar or non-polar polymers. 
The piezomodulus increment (∆d33) at the transition on the 
multicomponent composites was determined by optimal 
values of the piezomodulus dependence d33 on Ep and by the 
comparison of the piezomodulus of two matrix and more 
effective one-matrix composites. 

Dependences of d33 on Ep for composites on the base of 
the matrix from the polar fluorine-containing polymers are 
shown on fig. 3 (a,b). It is seen, that d33 of the composite on 
the base of the matrix PVDF+F3 is equal to the composite 
piezomodulus on the base of only PVDF (fig. 3,b) or a bit 
lesser (fig. 3,a). 

 

 
 

     
Fig. 3. The dependence of the piezomodulus d33 on the electric  
            field voltage of the polarization Ep. Tp= 140° C (α) 

                   I – F3+PZT-I9; II – PVDF+PZT-I9; III – PVDF+F3+PZT-I9 
            Tp= 180° C (δ)  
             I – F3+PZT-I9; II – PVDF+PZT-I9; III – PVDF+ F3+PZT-I9 
 
Therefore, it may be concluded, that at the elaboration of  

multiphase composites, it is better to use the combination of 
the polar and non-polar polymer, than to use that of only non-
polar or only polar polymers. 
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Obtained results, obviously, at first approximation may be 
explained with regard of changes of the supermolecular 
structure of matrix at their mixture and the composites 
receipt, and also by the compatibility of polar and non-polar 
polymers. 

The SMS change  may mainly occur in the transient layer 
of polymer phases. And  it, in its turn, is determined by the 
compatibility of used polymer couples, in particular, PE+PP 
or PP+PVDF. As it is known, the thickness of this layer, is 
more exactly, the thickness of the segmental solubility layer 
makes dozens or hundreds Å  [6]. The formation of such layer 
imposes limitations on the SMS formation in amorphous-
crystal polymers in the direct proximity to the layer. 

The thickness of the boundary layers with the changed 

SMS and properties on the contact surface of polymers may 
reach many hundreds and even thousands Å. Boundary layers 
may be additional phase for the change filler in the process of 
the composite polarization. Really, as it is seen from the table 
2 at identical conditions the electrothermopolarization in the 
two-matrix system accumulates more changes, than in one-
matrix composite. The value of the accumulated in the 
electrothermopolarization change, as it was proved before, 
determines the piezomodulus value of the composite [3]. 
Obviously, in two-matrix composites on the base of polar 
(PVDF) and non-polar (PP) polymers, a new phase, formed 
on the contact boundary of polymer segments has an ability 
to strong accumulate changes at the 
electrothermopolarization.

  
[1] A.I. Mamedov, S.N. Musayeva, M.A. Kurbanov,  

A.Sh.Gasanov. Fizika, 2001, c.VII, №3б p 50-52. 
[2] M.M. Kuliyev, S.N. Niftiyev, S.N. Musayeva, I.A. Farad-

zhzade, M.G.Shakhtakhtinkiy, M.A. Kurbanov. Fizika, 
2000,c.VI, №4 р.3-5 

[3] M.A. Kurbanov. Elektretniye, piezo, pyroelktricheskiye, 
varistoroniy i pozistorniy effekti v polimernikh 

kompozitzionnikh dielektrikakh”- Disser. d.f.-m.n.- 
Baku, 1985, 477. 

[4] B.I. Sajin “Elektricheskiyi svoystva polimerov”, 
Leningrad, 1986, 224. 

[5] V.A. Marikhin, L.P. Myasnikova. “Nadmolekularnaya 
struktura polimerov”, Leningrad: L:Khimiya, 1977, 230. 

[6] Entziklopediya polimerov, Moskva, 1977, v.3, p.433.
 
 

М.Я. Гурбанов, М.Н. Шащтахтински, С.Н. Мусайева, Г.Г. Ялийев, Б.М. Иззятов 
 

ИКИКОМПОНЕНТЛИ МАТРИСА ЯСАСЫНДА ПЙЕЗОКОМПОЗИТЛЯР 
 

Полйар-полйар, полйар-гейри полйар вя гейри полйар-гейри полйар полимерляр кими ики матриса ясасында композитлярин електрофизики 
вя пйезоелектрик хассяляри тядгиг едилмишдир. Експериментал олараг эюстярилмишдир ки, чохфазалы композитляр щазырлайаркян йалныз 
полйар вя йа йалныз гейри-полйар полимерлярдян дейил, матриса кими полйар вя гейри-полйар полимер гарышыьындан истифадя етмяк 
лазымдыр. 

 
М.А. Курбанов, М.Н. Шахтахтински, С.Н. Мусаева, Г.Г. Алиев, Б.М. Иззатов 

 
ПЬЕЗОКОМПОЗИТЫ НА ОСНОВЕ ДВУХКОМПОНЕНТНОЙ МАТРИЦЫ 

 
Исследованы электрофизические и пьезоэлектрические свойства композитов на основе двух матриц: полярный-полярный, 

полярный-неполярный и неполярный-неполярный полимеры. Экспериментально показано, что при разработке многофазных 
композитов следует использовать сочетание полярных и неполярных полимеров, чем использовать сочетание только неполярных, 
или же только полярных полимеров. 
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ON THE IMPORTANCE OF THE TRANSITION Of - WN STARS 

FOR THE UNDERSTANDING OF STARS WOLF – RAYET TYPE EVOLUTION 
 

J.N. RUSTAMOV,  S.G. ZEINALOV 
Shamakha Astrophysical Observatory of National Azerbaijan Academy of Sciences,  

 F.Agaev 9, Baku 370143, Azerbaijan  
 

 The similarity of the properties WR (WN) and Of stars have been considered. The possible evolutionary connections between this group 
stars are investigated. It is proposed that there may exist nitrogen – rich Of stars. Five criteria for the determination of such objects are 
proposed. Nitrogen – rich stars are close to WN7-8 stars at the evolution stage . Observation of nitrogen - rich Of stars is important for the 
understanding  of Of – WN7-8 evolutionary connection.  

 
1. Statement of the problem. 

 
      The Of stars are the most luminous objects among O stars 
of early subtypes. More massive O stars are progenitors of Of 
stars. Of  stars are located at the Main Sequence in the region 
corresponding to the highest temperature and  luminosity. All 
Of stars are more massive stars. The presence of emission 
lines with profiles P Cyg in the UV and visible region in the 
spectra of the Of stars indicate that these stars lose mass. 
From the similarity of spectral properties of Of and Wolf-
Rayet (WR) stars Conti [1] for the first time proposed the 
hypothesis that the WR stars had evolved by stellar wind 
mass loss from massive Of stars (scenario Conti), although 
this statement have not been investigated completely.  
     In the present paper, the probable evolutionary connections 
between Of and WR stars are considered, and some 
interesting results have been obtained. 
     
 2. The comparison of the spectral properties and  
      evolutionary connection of  Of and WR stars. 
       
      The Of stars are those O stars whose optical spectra 
display the presence of strong emission lines NIIIλλ  4634, 
4640,4642 and HeIIλ4686. Other interesting spectral lines in 
the visible region in the spectra of the Of stars   are CIII 
λλ4647-4651 and CIIIλ5696.    
     It is known that the WR stars have been divided into three 
spectral types [2]: WN stars which exhibit emission lines of 
dominantly N (NIII-NV) and He ions with little evidence for 
C, have been considered as C-poor objects; WC stars showing 
predominantly He and C lines and virtually no evidence for 
N, have been considered as N-poor objects; WO stars whose 
optical spectra display strong OIV, OV and OVI lines. 
According to [3] the spectra of WN WO stars reflect an actual 
enhancement of the abundance of oxygen, relatively to the 
WC stars. Authors of [3, 4, 5] proposed such an evolution 
scheme for the WR types: 
        

                 WN  →  WC →  WO                                  (1) 
 

      Therefore the newly formed WR star is a WN star. It is 
known that for the spectral classification of stars WN4-9 
subtypes were proposed [6]. These WN4-9 subtypes certainly 
represent different ionization conditions in the stellar wind of 
the WN stars. Various observational properties : luminosity, 
age, spectrum, H/He ratio, ionization structure of the 
envelope set WN7-8 stars clearly apart from other WR 
subclasses [7]. Namely this subtype of WR stars may be 
evolved by stellar wind mass loss from Of stars. The 

difference between WN7-8 and Of spectra is that in WN7-8 
stars the emission spectrum is more developed, and that 
WN7-8 stars have higher mass loss rate and greater envelope 
density than Of stars. The emission line HeIIλ4686 is present 
in the spectra Of and WN7-8 stars, however this line narrower 
in Of stars than in WN7-8 stars.     
          The example for the transition object is star –67o22 in 
the LMC with both WN and Of properties [8]. It is difficult to 
classify this star because the broad emission lines and Balmer 
series in absorption are visible at the same time. We would 
like to stress that the difficulty in classification of such 
objects may often be not the disadvantage of the 
classification system but rather the fact that one deals with 
stars which have only slightly different properties. Because of 
similarity of WN and Of stars they both even fitted in same 
early classification schemes before. 
     Although Of and WN7-8 stars have similar properties there 
are also differences between them. We may indicate five 
main differences between these stars: 
 

1. In WN7-8 stars the nitrogen overabundance is easily 
seen [9]. But this statement   has not been revealed for the Of 
stars obviously. If some Of stars truly become                 
WN7-8 stars we must observe much close to WN7-8 the Of 
stars – nitrogen rich Of stars (Of – WN7-8 transition objects). 
We assume that these stars are more massive Of stars.    

 2. One of the basic correlations discovered by Beals [10] 
was the fact that emission lines in WR stars arising from ions 
of high ionization potential had much narrower widths than 
those of low ionization potential. This relation is more readily 
seen for the WN stars than for the WC stars because of line-
blending. 

It is important to verify validity of this correlation for the 
Of stars. We assume that this correlation takes place namely 
in the transition Of - WN7-8 stars. 

3. Another property of WN7-8 stars distinctive from other 
stars is the H/He ratio. WN7-8 stars are H – poor objects, 
because of loss of H – rich envelope by stellar wind. 
Therefore the transition Of – WN7-8 objects must be the H – 
poor objects.  

4. Another difference between Of and WN7-8 stars is the 
mass loss rate. The mass loss rate is higher for the WN7-8 
stars than for the Of stars, therefore WN7-8 stars have more 
dense envelope.  

  5. The  HeIIλ4686 is present in the spectra of the Of and 
WN7-8 stars. Widths of this line increase with the transition 
from Of to WN7-8 stars.       

 

From 1-5 we may conclude that the spectra of the Of - 
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WN7-8 stars transition distinguish from those Of and WN7-8  
stars by the degree of emission line strength, they also have 
different envelope densities and mass loss rates.  We think 
that the evolution from Of type to the WN7-8 is gradual and 
not dramatic. Stellar wind mass loss rate and  chemical 
mixing can explain such behavior. Therefore we may give 
more exact evolution scenario for the evolution of WR stars 
subtypes:  
 
      O→Of→WN7-8→WN early→WC→WO     (2)  
 

       3. Conclusions 
   1. Some massive Of stars by stellar wind mass loss may 

gradually evolve into WN7-8  stars. 
   2. There must be the Of - WN7-8 stars transition with five 

properties indicated above. The spectral properties of 
these stars must be intermediate between those of Of and  WN7-
8 stars. 

    3. Observation and investigation of the Of – WN7-8 stars 
transition are important for the understanding of the 
evolutionary connection between Of and WR stars.
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[2] J.N.Rustamov, Fizika. 2002. No. 2. p. 56  
[3] M.J. Barlow and D.G.Hummer, in: C.W.H. de Loore 

and A.J.Willis (eds).Wolf-Rayet   Stars: Observations, 
Physics, Evolution. IAU Symp. № 99. 1982. р.295. 

[4] B.Paczynski, in: M.K.V.Bappu and Sahade (eds.) Wolf-
Rayet and High Temperature Stars. IAU Symp. №49. 
1973.р.143.  

[5] A.J.Willis and R.Wilson, Monthly Notices Roy. Astron. 
Soc.1978. № 182. р. 559. 

[6] A.Karel, van der Hucht and P.S.Conti,  Space Science 
Reviews  1981. 28.   

[7] A.F.J.Moffat and W. Seggewiss, Astron. Astrophys 
1979. v. 77,p. 128. 

[8] P.S. Conti, Wolf-Rayet         Stars: Observations, 
Physics, Evolution. IAU Symp. №. 99. 1982. p..551. 

[9] T. Nugis, in: Variable Stars and Stellar Evolution. 1975. 
p. 291.    

[10] C.S. Beals, Monthly Notices Royal Astron. Soc. 1929. 
№ 90. p. 202. 

 
Ж.Н. Рцстямов, С.Г. Зейналов 

 
Оф - WN  КЕЧИД УЛДУЗЛАРЫНЫН VOLF-RAYE   ТИПЛИ УЛДУЗЛАРЫН 

 ТЯКАМЦЛЦНЦ АНЛАМАГ ЦЧЦН ВАЖИБЛИЙИ  ЩАГГЫНДА 
 

Оф вя Волф-Райе улдузларынын спектрал хцсусиййятляринин охшарлыьы арашдырылмышдыр. Бу улдузлар арасында мцмкцн тякамцл 
ялагяляри тядгиг олунмушдур. Азотла зянэин олан Оф – WN7-8 кечид улдузларынын мювжудлуьу щаггында щипотез иряли сцрцлмцшдцр. 
Бу улдузлар тякамцл нюгтейи нязяринжя WN7-8  улдузларына йахын олмалыдыр. Азотла зянэин олан Оф улдузларынын мцшащидяси  Of – 
WR  тякамцл ялагялярини баша дцшмяk цчцн мцщцм ящямиййят кясб едир. 

 
 Д.Н. Рустамов, С.Г. Зейналов 

 
О ВАЖНОСТИ ПЕРЕХОДНЫХ Of- WN ЗВЕЗД  

ДЛЯ ПОНИМАНИЯ ЭВОЛЮЦИИ ЗВЕЗД ТИПА ВОЛЬФА - РАЙЕ 
     

Проанализировано подобие спектральных особенностей  WR(WN) и  Of звезд. Исследованы возможные эволюционные связи 
между этими объектами. Предложена гипотеза о возможности существования Оf звезд с обилием азота. Предложены 5 критериев 
для выявления этих объектов. Эти объекты эволюционно могут быть близки  к WN7-8  звездам. Выявление этих объектов является 
важным обстоятельством для понимания эволюционных связей между Of и WN7-8 звездами. 
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It is experimentally established that electroacoustic converters of the medical purpose may be created by the change of the polarization 
conditions, physico-mechanical characteristics, the configuration and geometric sizes of piezocomposite elements. 
 

The modern medicine is inconceivable without 
piezoelectric diagnostic devices, operating in the ultrasound 
range [I]. They are necessary for the visuality of deep 
structures of body and internal organs for the investigation of 
tissues structure and the control of parameters of the moving 
medium and structures, for example, at the research  of the 
blood circulation and heart work. The physiotherapical 
ultrasound piezoelectric technique is successfully applied at 
various diseases treatment, in particular, breath organs with 
the application of the aerosoltherapy method [2]. The main 
criterion, determining aerosol penetration in structural 
elements of lungs, is the size of aerosol particles [2]. So, for 
example, it is experimentally proved that particles with the 
radius r<5 mcm penetrate the lungs alveolus. The dispersion 
of the medicinal substance and its transfer in the 
aerodispersional  system is realized by piezoelectric sprays. 

It is shown in [2], that the radius (r) of aerosol particles 
reduces by the increase of the resonance frequency of the 
piezoelectric spray. It is known, that the resonance frequency 

of the piezoelement is determined as 
2d

fr
ϑ

= , where ϑ - is 

the sound spreading velocity, d is the piezoelement thickness. 
In the case of the piezocomposite the element thickness may 
be visibly reduced and by that ƒr may be increased. High 
piezoelectric and physico-mechanical properties of composites 
allow to obtain on their base piezoelements of various 
configuration and resonance frequency. On principle, such 
task is solved even in the case of the piezoceramic elements 
application. However, the fragility and high internal mechanic 
voltage in piezoceramics do not allow to visibly reduce the 
piezoelement thickness. Besides, piezocomposite element may 
have because of the high possibility of the thickness 
reduction resonance at relatively high frequencies in 
comparison with the piezoceramic material. In the given 
paper possibilities of piezocomposite materials application as a 
piezoelectric resonator for aerosoltherapy devices are 
investigated. Composites are obtained on the base of the hot 
pressing. The piezoelement thickness is variated from 250 to 
1500µm. 

Piezoelements are obtained on the base of polyvinylidene-
fluoride and polypropylene (table 1) of lead-zirconate-titonate 
family of various structures. Piezoelements are polarized at volta-
ges of the polarization electric field from 1,0 to 16 mV/m and 
temperature from 373 to 450 K. The cubic content of the 
piezophase in composites is changed in limits from 10 to 70%. 

The dependence of piezoelectric characteristics of composites 
on conditions are presented on fig.1 and 2. It is seen, that 
composites have high piezosensitivity gi and piezomodulus di. 
The piezomodulus dependence on the temperature (Tp) and 
the voltage of the polarization electric field (Ep) has extreme 
nature, at first by the growth of Ep and Tp the value d33 
increases and achieve maximum, and then reduces. The value 
d33 from the cubic content of piezophase (F) grows quicker, 
than by the linear law. And g33 from F grows at first and 40% 
achieve the maximal value. Main parameters of 
piezoceramics –PCR-3M and PCR-7M, and also composites 
on their base and polymers PVDF, PP are presented in tables 
1 and 2. 

 
Fig.1 The dependence of d33 and g33 on F of the composition  

          PP+PCR-3М   Тp=393К, Еp =3mV/m. 

                                                                                          Table 1. 
The polymer  
Name 

Polypropylene Polyvinylidenefluoride 

Thechemical 
composition  
Of links 

 -CH2 - CH2 - CH3  -CH2  - CF2 

The polymer 
code 

PP PVDF (F2) 

ρv  (ohm. cm) 1014-1015 2.1014 

ε 2.3 13 
D33, (pC/N) - 6.3 
tanδ 4.10-4 0,017 
Тg ,  к 203 233 
Тpr ,  к 463 473 
ρ, (g/sm) 0,92-0,93 1,76 
D31 ,  pC/N - 15 
E31 ,V.m/N - 0,11 
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Fig.2 a.  The dependence of d33 on Ep of the composition PP+PCR-3M: ТP=373 К,  2- ТP =393 К, 3- ТP=413 К, 4 – ТP=433 К. 
          b. The dependence of g33 on Ep of the composition PP+PCR=3M: ТP=373 К,  2- ТP =393 К, 3- ТP=413 К, 4 – ТP=433 К 
 
Piezocomposites, in their turn, have in comparison with 

piezoceramics defects (faults), connected with the low 
radiation power and capacity. Therefore, it is necessary to 
work out piezocomposites with radiation power no lesser 
(0,15÷5) Pa/V. If in the regime of the acoustic wave receipt 
the piezocomposites in comparison with the piezoceramics 
are more sensitive, at least to an order (table 2 and 3), then in 
the radiation regime they yield to the piezoceramics (table 3). 
Therefore it is better to variate physico-mechanical properties 
of piezocomposites. So, that in the radiation regime their 
efficiency is to be equal and close to the piezoceramics 
efficiency. One of the factor of the piezoelectric materials 
efficiency is the coefficient of the electromechanical 
coupling. If the sample has the shape of the plate with cross 
sizes, which is far more than the thickness, and vectors of the 

polarization and the voltage of the electric field are directed 
perpendicularly to electrodes, then all values, included in the 
equation of the direct and inverse piezoeffects, have only one 
component and the coefficient of the electromechanical 
coupling is determined by the expression: 

 

D

u2

D

u2

E

2
2

S
g

C
h

S
d εε

ε
β

σ
===  

where d-is the piezomodulus, εσ, εu are dielectric constant at 

0=σ  and ,0=u  respectively, SE - is the pliability, h-is the 

piezocoefficient, g-is the piezosensitivity, СD -is the elasticity 

coefficient at D=0.  
                                                                                                                                                                                                 Table 2. 
 

Characteristics of 
compositions and 

pizoceramics 

Composites and 
conditions of their 

polarization 

kd 33  
pC/N 

33g  
V.m/N 

   εik k

33d  
pC/N 

kd 33 / kε  
V.m/N 

PP+50% com 
PCR-7М 
Тp=393 К 

Еp=3 МV/м 
Еp=6 МV/м 
Еp=12 МV/м 
Еp=9 МV/м 

16,5 
23 
40 
45 

0,072 
0,135 
0,157 
0,212 

5000 
- 
- 
- 

 

760 
- 
- 
- 

 

0,0108 
- 
- 
- 

PP+50% com. 
PCR-3М 
Тp=393 К 

Еp=1 МV/м 
Еp=2 МV/м 
Еp=3 МV/м 
Еp=5 МV/м 

 

28 
59 
120 
74 

0,086 
0,17 
0,339 
0,213 

400 
- 
- 
- 
 

99 
- 
- 
- 
 

0,028 
- 
- 
- 

PVDF+50% com. 
PCR-3М 
Тp=413 К 

Еp=4,5 МV/м 160 0,290 400 99 0,028 

 
The square of the electromechanical coupling 

coefficient β2 is determined by the piezoconverters 
sensitivity at the emission (radiation) and the receipt of 
sound waves. We compare the value β2 of the 

piezoceramics and piezocomposites with the aim to 
determine the application possibilities of polymer-
piezoceramics composites for the creation of medical 
devices radiators. Parameters, included in the formula β2 
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and values β2 for various piezoceramics and PVDF+PCR- 3M composite, are presented in the table 3. 
                                                                                                                                                                    Table 3. 

Piezoelectric 

materials 

Piezomodulus 

diж . 1012, 

C/N 

Elastic pliability 

N/m

,10S
2

12
ik ⋅

 

Relative dielectric 

constant 

33ε  

Piezosensitivity 

N/Vm

g ,ij  

 

β2 

PZT-19 

ZTPNB –1 

\ZTBP-3 

250 

400 

300 

14.9÷10.4 

16.8÷14.7 

12.2÷10.7 

1725±326 

2250±560 

2350±500 

0,013 

0,02 
0,016 

2,6 

3,6 

3,0 

Piezocomposite 

PVDF+PCR-3M 

160÷200 160 100±10 0,25 1,6÷2,5 

 
 

 
Fig. 3. The dependence of d33 of the composite PP+50 %  
           PCR-5 on the grain diameter of the piezoparticle PCR-5 
 
It is seen from the table 3, that values β2 for high effective 

piezoceramics PZT-19, ZTBP and ZTPNB-I and the 
composite PVDF+PCR-3M, distinguish a little. So, for 
example, values ratio β2 for ZTPNB-I and PVDF+PCR-3M is 
equal to ∼1,5. Piezoceramics factors (indices) may be 
obtained in the radiation regime in composites by the small 
growth of the value dij and the reduction of sic by means of 
the variation of the cubic content and the grains size (D) 
(fig.3) of the piezofiller in the composite and the 
improvement of technical regimes of the composites receipt 
and also small increase of the excitation voltage. So, for 
example, the piezomodulus value (d33) of the composite 
PP+50 % PCR-5 may be regulated by the variation of the size 
of the piezoparticles (piezophase) grain PCR-5. The grain 
diameter (D) is variated by the change of the pressure and 
sintering temperature of the piezoceramics PCR-5. It is seen, 
that d33 of the composite grows visibly by the increase of D. 
The simplicity of the receipt technology, high physico-
mechanical and piezoelectric characteristics, and the 
possibility of the piezoelement receipt of the various 
configuration make the piezocomposite more effective 
piezomaterial for the creation of electroacoustic converters of 
the new generation, distinguished by high exploitational 
characteristics. We should note, that the research on the 
creation of medical devices, in particular, aerosoltherapy 
devices on the base of piezocomposites is in present time on 
the initial stage. It is necessary to work out the physical 
principles of the composite material creation for radiators and 
receivers, to calculate optimal constructions of separate 

converters, to determine configurations and geometric sizes 
of the piezocomposite element, and also optimal regimes of 
the polarization. It is necessary to especially note, that the 
amplitude-frequency characteristic (AFC) and the radiation 
power of piezocomposite converters essentially depend on 
the configuration of the piezocomposite element (table 4). 
Results are obtained at the application to the piezoelement of 
10V voltage. 

The possibility of the wide variation of the configuration, 
what is impossible to obtain in the case of the piezoceramics 
capacity and piezomodulus dij, and, respectively, gij. It gives 
the chance of the creation of high effective piezocomposite 
radiators of the medical purpose. 

                                                                     Table 4 
f , Hz Р, Pа, the flat 

(plane) 

element 

Р, Pа, the domed 

(dome-shape) 

element 

mm1сr =τ  

1000 

1200 

1300 

1400 

1500 

1800 

2000 

2500 

3000 

4000 

26,0 

6,25 

4,0 

3,0 

2,82 

4,0 

1,8 

1,9 

0,1 

0,17 

9,0 

16,0 

24,5 

45 

68 

11,0 

7,5 

2,25 

2,25 

2,4 

 
 Amplitude-frequency characteristics of piezoresonators 

from the composite PP+50 % PCR-3M ( the curve 3) and the 
piezoceramics PZT-19 (curve 2) are compared on fig. 4. 

It is seen that the value of the resonance frequency ƒr of 
the inhaler piezoresonator of the TUMAN-1.1 type may be 
increased at the piezocomposite application as a 
piezoresonator. The growth of ƒr, as it has been already 
noted, leads to the reduction of the diameter of the medicinal 
aerosol particles of the inhaler, and consequently, increases 
the efficiency of this device. 
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Fig. 4 The amplitude-frequency characteristics of the signal generator in the regime of the inverse piezoelectric effect 

1. The regime of the idle run 
2. The regime with the use of piezoceramics PZT-19 
3. The regime with the use of piezocomposites PP+PCR-3M 

                The thickness of the piezoceramic element PZT-19 is 1,5 mm 
                The thickness of the piezocomposite element PP+PCR-3M is 0,5 mm. 

 
Therefore, piezoelectric acoustic converters of the 

medical purpose may be created by the change of physico-
technological regimes of the polarization condition, physico-

mechanical characteristics, the configuration and geometric 
sizes of the piezocomposite elements receipt. 
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The behavior of some kinetic coefficients depending on n-Ge and n-Si films surface orientation is investigated in the nonquantized 

magnetic field. The general solution of transport equation and expressions for the relaxation time at various electron scattering cases are 
obtained. Also the expressions for halvanomagnetic and thermomagnetic tensors are obtained at the arbitrary degeneration of electron gas. 
The Hall constant and thermopower of n-Ge and n-Si films in a strong and weak transverse magnetic field are calculated. 
 

1. Introduction 
       

At present thin semiconducting films are intensively 
investigated in the size-quantized conditions connected with 
microelectronics development. When the specimen sizes are 
of de Broglie wavelength of the current carriers’ the 
quantum-sized effects occur and the wave functions form 
changes. Some thermodynamic and kinetic properties of 
conducting films with standard zone (simple isotropic model) 
have been considered in the works [1-4]. In the work [5] the 
electron states in anisotropic size-quantized n-Ge and n-Si 

films have been considered and the so-called size-quantized 
anisotropy (dependence of physical values on film surface 
orientation) was predicted. Evidently, such dependence can 
be observed in kinetic properties of n-Ge and n-Si films. 
 
2. Transport equation                                                                              

 
The energy spectrum of electrons in the size-quantized n-Ge 
and n-Si films takes a form: 
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 ,                                        (1) 

 
where m and m⊥ are the longitudinal and transverse 
effective electron masses, respectively; d is the film 
thickness, s is the ellipsoid number, ns=1, 2, 3,… is the sized 
quantum number, α is the angle of rotation of a normal to the 
[001] film surface around one of the crystallographic axes, 
ϕs(α) are anisotropy functions characterizing ellipsoids 
orientation as regard to the system of reference (see [5]). 
      To consider some kinetic properties of the system it is 
necessary to solve the Boltzmann transport equation in the 
external nonquantized magnetic field. The solution of the 
same  equation for n-Ge and n-Si bulk specimens was 
obtained in the works [6,7]. In our case of size-quantized n-
Ge and n-Si films we have to solve the two-dimensional 
transport equation in film’s plane. 
       If one represents the nonequilibrium distribution 
function of electrons in the form: 
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,                            (2) 

 
and assumes that the external nonquantized magnetic field is 
directed along a normal to the film surface (transverse field) 
then the following solution of equation is obtained: 
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where  f0 is the Fermi-Dirac function, H
M̂c

ˆe
2/1

2/1τ
ν = ,  

Tk
Tk

Ee 0
0

s
0 ∇

−
−−=

rrr ξε
Φ ,  τ̂  is the tensor of relaxation 

time, 1M̂ −  is the inverse tensor of electron effective masses, 
τ̂  and M̂  are determinants of the relaxation time and 

effective masses tensors, respectively. 
As we see from (2) and (3) P

r
like nonequilibrium 

function depends on components of the relaxation time 
tensor. Therefore, to calculate the kinetic coefficients it is 
necessary to obtain the relaxation time expression for 
different electron scattering cases. In n-Ge and n-Si films 
plane P

r
has two components depending on only one 

relaxation time parameter τs. 
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The τs expression for electrons scattering on acoustical 
and non-polar optical phonons, point defects and ionized 
impurities in films plane takes a form: 
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where 

s
'
s

W
ββ

is the probability of electron transition from a 

( )yxss k,k,n=β  state  to a ( )'
y

'
x

'
s

'
s k,k,n=β  state and 

back. 
      The exact calculations in the cases of electron scattering 
on phonons and point defects give us: 
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where 

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s
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ε
ε

 is an integer part of 
s1

s

ε
ε

 (the 

average number of film subbands below energy εs), εls=εs 
(ns=1, kx=ky=0), τ0 is the multiplier that doesn’t depend on 
energy but proportional to the film thickness. 

     As it is seen from (5) τ0 depends on energy only through 

sn . Moreover, τs essentially depends on n-Ge and n-Si films 
surface orientation and this dependence vanishes only at the 

1ns >>  limit when the result for bulk specimen is obtained. 
In the case of electrons scattering on ionized impurities 

the τs analytical expression for arbitrary sn  values is n’t 
obtained. However, if we assume that the scattering on 
ionized impurities occurs without the transition between film 
subbands then the following result for relaxation time is 
obtained: 
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where εns is the discrete part of the energy spectrum (1). 
  

3. Hall constant and thermopower 
 

Having knowledge of the transport equation solution and 
expression for the relaxation time one can calculate the 
current and the energy stream densities and then we can 
determine components of kinetic tensors. For the σik and βik 

(i,k=1, 2,; i≤k) tensors connecting the current and the energy 
stream densities with the electric field and the temperature 
gradient the following expressions are obtained: 
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N=4(n-Ge) and N=6(n-Si). 

On a base of the general expressions (7) and (8) for 
kinetic tensors we can calculate all kinetic effects in various 
conditions. Let us show some of them in a strong (ν>>1) and  
weak (ν<<1)  transverse magnetic fields. 
     So, for the Hall constant in the strong magnetic field we 
obtain: 
 

                      
ecn

1R
ef

f −=  ,                                           (9) 

 
where nef is the concentration of electrons in film. Therefore, 
in this case Rf doesn’t depend on the film surface orientation, 
degree of electron gas degeneration and electron scattering 
mechanisms. But unlike the bulk specimen nef depends on 
film thickness and this dependence characterizes the 
quantum-sized effect. 
     For the thermopower in this case we have: 
 

                                
( )
( )α
α

α
A
B

e
k0

f −=     ,                       (10) 

 



H. IBRAHIMOV, V. HAJIYEV 
 

 24 

where  
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The analysis of expression (10) for fα  shows us that in 
this case thermopower doesn’t depend on scattering 
mechanisms and for degenerated electron gas we obtain: 
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 is the density of 

electron states in n-Ge and n-Si films [5]. 
     Therefore, the αf behavior in this case is the same like for 
the density of electron states near the Fermi energy at the 
fixed nef. Otherwise, the thermopower depends on the film 
thickness as 1/d until the film subband coincides with the 

Fermi energy. In this case αf has a leap and is equal to the 
thermopower value in bulk specimen. Therefore, the 
thermopower dependence on film thickness has a saw-
toothed character. 
     In another case of nondegenerated electron gas for αf we 
have: 
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The αf behavior on film thickness in this case differs from 

the one for degenerated electrons. The analysis of expression 
(12) shows us that for fixed nef. Otherwise, thermopower in 
this case also is a nonmonotonous function of film thickness. 
When 1ns >>   limit the result for bulk specimen is obtained 
that doesn’t depend on a film thickness. 
     The same kinetic coefficients in the weak magnetic field 
take forms:                              
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r=0 for phonons and point defects and r=2 for ionized 
impurities. 

Therefore, in this case unlike the strong field Rf depends 
on film surface orientation. Thermopower αf depends on 
magnetic field like small correction proportional 2

0ν . 

     In conclusion, we note that kinetic coefficients in size-
quantized n-Ge and n-Si films essentially depend on film surface 
orientation. Therefore, they possess the so-called size-quantized 
anisotropy. It is the most particular feature of kinetic quantum-
sized effects in the anisotropic n-Ge and n-Si films. 
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Щ.Б. Ибращимов, В.М. Щажыйев 

 
n-Ge ВЯ n-Si ЦЧЦН КВАНТЛАНМЫШ НАЗИК ТЯБЯГЯЛЯРДЯ ЕЛЕКТРОН КЕЧИРМЯ ЩАДИСЯЛЯРИ 

 
n-Ge вя n-Si назик тябягялярин сятщиндян асылы олараг квантланмамыш магнит сащясиндя кинетик ямсалларын хассяляри тящлил 

олунур. Кинетик тянлийин цмуми щялли алынмышдыр вя мцхтялиф електрон сяпилмяляри цчцн релаксасийа заманы щесабланмышдыр. Щямчинин 
ихтийари жырлашмыш електрон газынын галваномагнит вя термомагнит тензорлар цчцн ифадяляр алынмышдыр. Вя назик тябягялярдя эцжлц 
вя зяиф ениня магнит сащясиндя Щолл ямсалы вя термол-ЕЩГ щесабланмышдыр.  

 
Г. Б. Ибрагимов, В.М. Гаджиев 

 
ЭЛЕКТРОННЫЕ ЯВЛЕНИЯ ПЕРЕНОСА В РАЗМЕРНО-КВАНТОВАННЫХ ПЛЕНКАХ n-Ge И n-Si 

 
Исследовано поведение некоторых кинетических коэффициентов для размерно-квантованных пленок n-Ge и n-Si в 

неквантованном магнитном поле в зависимости от ориентации их поверхности относительно кристаллографических осей. 
Получено общее решение для кинетического уравнения и выражения для времени релаксации при различных механизмах 
рассеяния. Также получены выражения для компонент гальваномагнитных и термомагнитных тензоров при произвольном вырож-
дении электронного газа. Вычислены коэффициент Холла и термо-ЭДС для пленок n-Ge и n-Si в сильных и слабых поперечных 
магнитных полях. 
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CONDITIONS FOR THE TEMPERATURE STABILIZATION OF THE 

THERMOELECTROMOTIVE FORCE IN SEMICONDUCTIVE MATERIALS 
 

T.G. OSMANOV, R.S. MADATOV 
The Institute of Radiation Problems of NASA 

 
F.K. ALESKEROV, N.M. ABDULLAYEV, S.A. NABIYEVA 

NPO “Selen” at the Institute of Physics NASA 
 

The possibility of the stabilization of the common thermoelectromotive force versus the temperature is observed for materials with the 
standard band structure of one-type charge carriers and for those, having the complex construction of the valent band or )and) the conduction 
band (two-band model). It is shown, that the stabilization of the common thermoelectromotive force α is possible for the energy spectrum of 
the charge carriers corresponding to the two-band model if the width of the forbidden band ∆E is more than the value of the energy gap ∆ε 
between subbands. 

 
The practical value of the semiconductive substance, 

which is applied in various thermal converters is determined 
firstly by the average value of the dimensionless parameter 
ZT, in which at the given temperature T the value of the 
thermal efficiency Z, according to the A.F. Ioffe criterion, is 
equal to: 

                            
com
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χ
σα

= ~
cat

u
χ

                              (1) 

 
where α, σ, χcom are the common thermoelectromotive force, 
electroconductivity and heat conductivity, respectively, u is 
the mobility of the charge carries, χlat is the lattice heat con-
ductivity. 

The maximum of Z (Zmax) at the given temperature T [1] 
depends on: 1) the reduced Fermi level µ∗; 2) the dimen-
sionless coefficient: 
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and 3) the parameter of the charge carriers scattering r, where 
h is the Planck’s constant, e is the electron charge, k0 is the 

Boltzmann’s constant, 

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m
 is the effective mass, T is the 

temperature. 
The dependence of Z T on the reduced Fermi level µ∗ has 

maximum, the sharpness and value of which depend on β [1] 
and respective thermoelectromotive force α and electrocon-
ductivity are optimal - αopt and σopt. 

The stabilization of the reduced Fermi level µ∗ in the de-
termined temperature interval corresponding to the value αopt 
leads to the considerable growth of the parameter Zave ∆ T 
and, consequently, to the maximal temperature gradient 
∆Tmax, the maximal cooling coefficient Kmax and maximal 
efficiency ζmax, in this interval, what has a great value for the 
development and practical use of the applied material in vari-
ous cooling and generator devices. 

The term “stabilization” means not the expression α(T) 
and α(n); α(p)=const, but the change of the value α in deter-
mined limits, usually ±5-7% from the value of αopt. At pre-
sent time in the applied thermal material of n and p-type the 
value of the thermoelectromotive force α corresponds to the 

case of weak electrons and holes degeneration and its value 
versus the Fermi level µ∗ is determined as: 
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where [ ]dх1)хexp(F *r

0
r +−∫=
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µχ  is the Fermi inte-

gral, the value of which is tabulated in [2], r-is the scattering 
parameter.  

 The reduced Fermi level µ∗ is connected with the charge 
carriers concentration p(n), the effective mass of the state 
density m*/m0 (electrons and holes) and the temperature T 
through the Fermi integral as: 
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It is seen from the formula (2) that at conditions 
m*/m0(T)=const, r =const, p(n)~T3/2 the Fermi integral 
F1/2(µ∗), and consequently µ∗ and α, for substances with the 
standard parabolic band and one-type charge carriers, do not 
depend on the temperature, i.e. they are stabilized. 

 
Fig. 1. Schematic picture of the energy bands of the complex  
           structure. 
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For known semiconductive materials the theory of the 
transfer phenomena gives much stronger dependence n(T) 
and p(T), and therefore the stabilization of the thermoelec-
tromotive force α(T) is impossible in them. For substance 
with the complex band structure, to which Bi2Te3 of p and n-
type, Sb2Te3 of p-type and etc. refer, it is possible to suppose 
the possibility of the condition fulfillment F1/2(µ∗)≈const at 
the stability of the common charge carriers concentration in 
the subzone (pcom(T)=const) (fig.1). 

At such condition the common thermoelectromotive force is: 
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=                             (5) 

 
the common electroconductivity is: 

 
21 σσσ +=  

 
the common charge carriers concentration is: 
 

                               p=p1+p2                                  (6) 
 
                             n=n1+n2                                     (7) 
 

where indices 1,2 refer to the first and second subzone of the 
valent band or the conduction band. 

At the primary carriers scattering at the acoustic oscilla-
tion of the lattice (r=-1/2), the partial thermoelectromotive 
force, electroconductivity and the carriers concentration in 
the subbands have the form: 
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        p1(n1)=4(2π m*/m0k0T)3/2F1/2( *µ )       (12) 
 
     p2(n2)=4(2π m2*/m0k0T)3/2F1/2( *µ -∆)       (13) 
 

where u01, u02 are the mobility of non-degenerated carriers in 
the first and second subbands, respectively. 

For the analysis of the thermal and concentration depend-
ence of the common thermoelectromotive force αcom, the ratio 
of the effective mass of the state density in the subbands 
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value of the energy gap ∆ε, and the width of the forbidden 
band ∆E are usually accepted as constant values, subbands 
are parabolic, and the mechanism of the charge carriers scat-
tering is equal. At low temperatures (kT« ∆ε) the charge car-
riers of the first subband mainly take part in the conduction 
process, the second subzone is almost empty and therefore 
(formulae 5-7) 

 
σ ≈σ1; p ≈ p1; α ≈ α1 

by this 

2

1

p
p »1, 1σ » 2σ , α 1«α 2 

 
and the common thermoelectromotive force αcom grows in a 
linear fashion with the temperature increase (part 1; fig. 2). 

 
Fig.2. The temperature dependence of the thermoelectromotive  
          force for n/n materials of p-type and with ∆E>∆ε. 

 
The redistribution of the charge carriers between sub-

bands occurs with the further temperature growth, the behav-
ior of the thermoelectomotive force αcom and electroconduc-
tivity σcom will depend on the relation between the thermal 
activation energy of the charge carriers ∆ET and the width of 
the energy gap ∆ε between subbands. Two cases are possible 
by this: 1) ∆ε < ∆E and 2) ∆ε = ∆E. 

1. In the first case the reduction of the carriers concentra-
tion in the low subzone p1(n1) and its growth in the second 
p2(n2) lead to the increase of the thermoelectromotive force α1 
and electroconductivity σ2, the reduction of the elctroconduc-
tivity σ and thermoelectromotive force α2. 

By the temperature growth the reduced Fermi level µ* 
approaches the top of the “heavy” holes subbands; the contri-
bution of its carriers in the transfer process increases and at 
the determined T (depending on subbands parameters ∆ε, ∆E, 
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
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m

m
 and etc.) the product α2 σ2 becomes more than α1 σ2 

and the common thermoelectromotive force αcom grows ac-
cording to much stronger law, it follows from the theory for 
substances with one-type carriers in the degenerated state 
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, the primary contribution of the second subband 

carriers is shown in the conduction process 
 

2com2com2com pp,, ≈≈≈ σσαα  
 
The further increase of the charge carriers concentration 

in the second subzone leads to the reduction of the thermoe-
lecromotive force α2 ( the formula Pissarencko) and in spite 
of the growth of σ2(T) the product α2 σ2 reduces and the 
common thermoelectromotive force αcom, passing through the 
maximum, reduces ( the formula 5) part 4. 

 The common electroconductivity σcom falls by this, both 
in the consuquence of the carriers number growth with the 

high effective mass of the state density 

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*
2

m

m
 and the low 

mobility u2, and the dependence of u2 on the temperature, the 
exponent «K» in the expression σcom ≈ T-k as it is more than 
3/2 by this (at the charge carriers scattering in the second 
subzone on the acoustic oscillation of the lattice r = - ½). 

Therefore, in the observed case the temperature depend-
ence αcom(T) differs a bit from the value αmax and they might 
be concerned stabilized to a required precision. The interval 
value ∆T (its length) depends on the relation ∆ε and ∆E. 

2. ∆ε = ∆E. In this case the contribution in the common 
thermoelectromotive force αcom and electrons electroconduc-
tivity σcom of the conduction band αn and σm occurs at deter-
mined temperatures, respectively, formulae (5)-(6) have the 
form: 
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Creating solid solutions on the base of the matrix (basic) 

materials, it is possible to obtain optimal values (∆ε < ∆E) at 
(∆ε = ∆E) the common electroconductivity σcom will increase 
- it is seen from the formula (13) at the whole temperature 
interval. 

From applied in the present time in the thermal converters 
materials of the complex energy spectrum of the charge carri-
ers, allowing to explain the behavior of kinetic parameters 
αcom, σcom, Rx versus the temperature and concentration, have 
mainly tellurides GeTe, SnTe, PbTe [3,4’; SbTe3, Bi2Te 
[5,6]. In all indicated tellurides the value of the energy gap ∆ε 
is lesser than the width of the forbidden band ∆E, i.e they 
meet the first case and it is possible by means of the solid 
solution creation on their base to achieve the stabilization of 
the common thermoelectromotive force αcom in the respective 
temperature interval. 
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Т.Г. Османов, Р.С. Мядятов, Ф.К. Ялясэяров, Н.М. Абдуллайев, С.А. Нябийева  

 
ЙАРЫМКЕЧИРИЖИ МАДДЯЛЯРДЯ ТЕРМО-ЕЛЕКТРИК ЩЯРЯКЯТ ГЦВВЯСИНИН ТЕМПЕРАТУРДАН 

АСЫЛЫ ОЛАРАГ СТАБИЛЛЯШДИРМЯ ШЯРТЛЯРИ 
 

Мягалядя мцряккяб гурулушлу кечирижи вя валент зонайа малик олан вя бир нюв йцкдашыйыжы, стандарт золаглы маддяляр цчцн 
температурдан асылы олараг цмуми Т.Е.щ.г-нин стабилляшмяси щалы арашдырылмышдыр. Эюстярилмишдир ки, ∆E гадаьан олунмуш золаьын 
ени ∆ε - енерэетик мясафянин гиймятиндян бюйцк олдугда йцкдашыйыжыларынын енерэетик спектри ики золаглы модула уйьун эялян 
маддяляр цчцн Т.Е.щ.г-нин стабилляшдирилмяси мцмкцндцр.  

 
Т.Г. Османов, Р.С. Мадатов, Ф.К. Алескеров, Н.М. Абдуллаев, С.А. Набиева 

                  
УСЛОВИЯ ТЕМПЕРАТУРНОЙ СТАБИЛИЗАЦИИ ТЕРМОЭДС В ПОЛУПРОВОДНИКОВЫХ 

МАТЕРИАЛАХ 
Рассмотрена возможность стабилизации общей термоэдс в зависимости от температуры для материалов со стандартной зонной 

структурой с одним сортом носителей заряда или обладающими сложным строением валентной зоны и, или зоны проводимости 
(двухзонная модель). Показано, что для веществ с энергетическим спектром носителей заряда, соответствующих двух-зонной 
модели, возможна стабилизация общей термоэдс α, если ширина запрещенной зоны ∆E больше величины энергетического зазора 
∆ε между подзонами. 
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THE SHAPER OF MODULATING SQUARE WAVES 

 
CH.O.QAJAR, S.A.MUSAYEV, I.Z.MOVSUMOV, M.R.MENZELEYEV  

Institute of Physics of National Science Academy of Azerbaijan 
 

The displacement of measured value of the resonant frequency of centers of microwave spectral lines of some rotational 
and rotationally vibrational transitions of asymmetric top molecules was observed. The shaper of zero-based square-waves 
eliminating of such displacements was designed and tested in a hybrid microwave spectrometer. 

 
The Stark modulation in microwave spectroscopy has 

many advantages, but sometimes the values of frequency of 
spectral lines centers measured by this method were 
displaced. The careful analysis of such spectral lines has 
shown, that the displacement of their resonant frequencies is 
caused by a displacement of zero level of modulating square-
waves. It was confirmed by dependence of the resonant 

frequency of transition s432-s422 28543,079 MHz (ethanol, 
gauche form) on magnitude of displacement of zero level of 
square-wave (fig. 1). As it follows from this figure, even a 
little change of voltage of zero level of zero-based square-
wave displaces measured value of frequency of a spectral line 
center on a few megahertz. 
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Fig.1 A curve of dependence of displacement of resonant frequency of transition s432-s422 28543,079 MHz of spectral line of gauche- 
         ethanol molecule on magnitude of voltage of displacement of zero level of modulating square wave 
 
The purpose of the present paper was working out the 

square-wave shaper with minimum displacement of a zero 
level. In well-known analogs of such shaper [1-3] a 
displacement of zero level sometimes reaches too high 
values, because of use of high-voltage bipolar transistors in 
output stages of shaper. Switchover of such transistors into 
state of saturation requires the particular shape and power of 
controlling impulses with necessity of high-voltage 
uncoupling. However even residual voltage of collector - 
emitter transition of the bipolar transistors in the opened state 
creates a displacement of zero level of square wave. 
Therefore special monitoring and compensation of such 
displacement is required. The presented shaper of modulating 
square waves (SMSW) is constructed on the basis of modern 
MOSFET-transistors having low values of resistance of a 
conducting drain - source channel in an opened state [4]. The 
control of the transistors is carried out by a special chip of 
high voltage, high-speed power MOSFET and IGBT drivers 
with dependent high and low side referenced output channels [5]. 

The shaper consists of the following functional blocks (fig. 2): 

      
Fig.2. Functional diagram of shaper of modulating square  

          waves. 
 

 Regulated power source of stabilized voltage 
RPSSV; 

 Internal quartz oscillator IQO; 
 Frequency converter FC; 
 Input and output threshold elements TE1, TE2; 
 Output shaping device OSD; 
 Measuring limiter ML. 
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The schematic diagram of SMSW is presented on a fig. 3.  
 

 
Fig.3. Schematic diagram of shaper of modulating square waves 

 a)       b)        c)       d)   
 
Fig. 4. Records of transition s432-a422 28543,079 MHz of spectral line of gauche-ethanol molecule at different values of amplitude of  
           modulating square wave a) U=2,5V; b) U=5V; c) U=7,5V; d) U=10V 

 
The harmonic signal of external driving generator 

incoming to input of the threshold element TE1 is converts to 
impulse. The frequency of these impulses sequence is divided 
on 2 in the FC constructed on basis of flip-flop circuit (chip 
4013). The pulse signal from an exit of a frequency converter 
transits into an input of the shaping device consisting of the 
half bridge driver U9 (chip IRF2104) [5] and shaping output 
switches Q3, Q4, as which the MOSFET transistors with an 
isolated gate and 1.4 Оhm resistance of an open channel IRF 

830 is used [4]. The amplitude of output zero-based square 
wave is determined by a value of voltage of RPSSV. The exit 
of the shaper is in accord with a load (wavequide cell) by 
adjusting of a potentiometer R5. The reference signal of 
phase-sensitive detector of the registering part of 
spectrometer is formed in a frequency converter and through 
a threshold element TE2 (Schmidt flip-flop U2в of a chip 
4093) comes to the corresponding SMSW exit. 
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During the process of testing of the shaper the value of 
voltage of zero level displacement was measured by 
oscilloscope by instrumentality of amplitude limiter ML (R7, 
R6, D2).  

The use in the shaper of modern element base has 
allowed to reduce a voltage of zero level displacement up to 
values, at which its influence to an accuracy of measurement 
of spectral lines centers frequencies becomes negligible. It is 
confirmed by record of spectral line mentioned above (fig. 4).  

Thus, necessity for monitoring and compensation of a 
zero level displacement of modulating impulses for separate 
transitions has disappeared and it enables to realize 
continuous record of a spectrum in an automatic mode. 

Moreover, range of operating frequencies has essentially 
extended, that enables to select an optimum relation of 
sensitivity and resolution of the measuring equipment at the 
record of spectral lines. 

SMSW stably works in a frequency range from 20 Hz up 
to 600 kHz and in all range of operating frequencies has the 
following characteristics:  

 Amplitude of output impulses  0÷100 V; 
 Off-duty factor 2; 
 Duration of front of impulses, no more than 300 ns; 
 Duration of cutoff of impulses, no more than 250 ns; 
 Loading capacitance, not less than 1000 pF; 
 Displacement of a zero level, no more than 10 mV. 
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МОДУЛЙАСИЙАЕДИЖИ ИМПУЛСЛАРЫН ФОРМАЛАШДЫРЫЖЫСЫ 

 
Асимметрик фырфыра типли молекулларын бязи фырланма вя рягси фырланма кечидляринин резонанс тезликли микродальалы спектрал 

хятляринин мяркязляринин юлчцлян гиймятляринин сцрцшмяси мцшащидя олунмушдур. Бу сцрцшмянин йаранма сябяблярини арадан 
галдыфрмаьа имкан верян модулйасийаедижи униполйар импулслары формаланшдыран гурьу щазырланмыш вя щибрид спектрометрин 
тяркибиндя сынагдан чыхарылмышдыр. 

 
Ч.О. Каджар, С.А. Мусаев, И.З. Мовсумов, М.Р. Мензелеев 

 
ФОРМИРОВАТЕЛЬ МОДУЛИРУЮЩИХ ИМПУЛЬСОВ 

 
Обнаружено смещение измеряемого значения резонансной частоты центров микроволновых спектральных 

линий некоторых вращательных и вращательно-колебательных переходов молекул типа ассиметричного волчка. Раз-
работан, изготовлен и испытан в гибридном спектрометре формирователь модулирующих электрических импульсов, 
устраняющий причины возникновения таких смещений. 
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THE PHASE TRANSITION SPREADING IN BISMUTH HTSC 
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Results of electric properties of bismuth crystals (2212) and (2223) are interpreted in a framework of the theory of spreaded phase 

transitions. Parameters, characterizing  the spreading degree of PT, are determined. It is shown, that in bismuth HTSC phase transitions have 
strongly spreaded nature and the spreading degree grows to an order under the influence of the magnetic field. 

 
INTRODUCTION 
 
The research of phase transitions is one of the most 

studied directions in solid-state physics. This is caused by the 
close relation of PT theory with many branches of physics 
and has always both the scientific and practical interest. 

Irrespective of the PT nature, they are followed by the 
jump-shaped changes of electric, segnetoelectric, heat, 
magnetic and other properties, which are successfully applied 
for the creation of converters of various types. The 
information on the rules of investigated effects changes in the 
PT region, on the influence of the external factors on these 
effects is necessary for the stable work of such converters. 
The interest to the PT research in solid states has grown after 
the discovery of high-temperature superconductors (HTSC). 

One of the actual issues of the given directions is to find 
out the rules of the phase coexistence in the PT region. 
Theoretical aspects of this issue are observed in papers [1,2]. 
Experimental data can be found in papers [3,6]. In the paper 
[6] results of electric and heat properties of Ag2Te in the PT 
region are interpreted in a framework of the theory of 
spreaded PT [1,2]. The parameters, determining the spreading 
degree of PT, are calculated. It is established, that structural 
phase transitions in Ag2Te have the spreaded nature, electric 
and magnetic fields, impurities, and also the excess of Te or 
Ag do not essentially influence on the spreading degree. It is 
shown, that parameters, calculated from heat and electric 
properties, are in agreement with data, obtained from 
temperature dependences of roentgen reflections intensities 
and may be applied to determine the PT parameters. 

The analysis of temperature dependences of HTSC 
electric properties in the PT region indicates on their 
analogous to the second type of superconductors, have 
peculiarities, which should be followed by the strong 
spreading of PT. Among such peculiarities the unusual 
mechanism of the interaction with magnetic, electric fields 
can be counted too in consequence of which the strong 
spreading of the transition region BT (B,E), the asymmetry 
growth relatively to T0, the fracture appearance on Bc2 (T). 
Therefore in the present paper the task is to observe the data 
of electric properties of bismuth superconductors (Bi (2212) 
and Bi (2223)) in the transition region in a framework of the 
DPT theory by methods, suggested in [1,2,6], to calculate PT 
parameters, determining the spreading degree and the 
influence of the magnetic field on it as well as to find 
superconductive one. 

 

THE THEORY AND METHODS OF THE DETERMINATION 
OF PHASE TRANSITION PARAMETERS 

 
Theoretical aspects of phases coexistence issues and the 

DPT parameters determination in solid states are considered 

in papers [1,2]. With this aim the theory of the spreaded 
phase transitions in condensed systems, based on the 
introduction of the switching function L(T) was used. It is 
assumed that if thermodynamic potentials of α and β-phase 
denote as Φα и Φβ , then the thermodynamic potential Ф(Т) 
in the phases coexistence region may be represented in the 
form:  

 
        )T(L)T()T()T( ⋅−= ∆ΦΦΦ α ,               (1) 
 

where .)T()T()T( ΦΦ∆Φ −= α In the case when the phase 
transition occurs in the temperature interval 

)1212 TT(TTT 〉−=∆ the switching function should fulfill 
the conditions: 
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According to the DPT theory, the expression obtained for 

the function L(T) looks as:  
 

             L(T) ={1+exp[-a(T-T0)]}-1,               (3) 
 

where T0 is the temperature, at which masses of both phases 
are quantitatively equal, α is the constant, characterizing the 
spreading degree of phase transitions and depends on the bulk 
of possible fluctuations and also the energy and PT 
temperatures. Taking into consideration the fact that the 
function L(T) characterizes the relative part of phase in the 
region of their coexistence, it may be represented in simple 
form: 
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where mo and mβ are masses of α and β-phases. Temperatures 
T0 may be determined from the temperature dependences 
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If α is some constant, then  the factor 
β

α

m

m
ln  should be 

the line function of the temperature. 
No less informative is the derivative of L(T) with respect 

to the temperature: 
 

       
))TT-(a(ch1

1
2
aTddL

0⋅+
⋅=    ,              (6) 

 
expressing the temperature velocity of phase transformations 
of each phase. 

The possibility of L(T) determination on the base of the 
structural research of phase transitions of solid states was 
shown in the paper [5,6]. It was supposed by this, that in the 
indicated regions of the phases coexistence the temperature 
changes of roentgen reflections intensities were caused by the 
quantitative changes of phases. In paper 6 assuming, that in 
the PT region temperature changes of the differential thermal 
analysis (DTA) and electric properties are also caused by 
mainly quantitative changes of α-β phases of Ag2Te and α, 
T0, L(T), dL/dT and other thermodynamic parameters are 
determined. It was necessary to achieve the line change of the 
temperature near and in the PT region. Then from the 
beginning of the transition to the end the interval ∆T may be 
divided on equal periods and corresponding values of the 
investigated effect relate to the supposed phases, for example: 
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The results comparison of а, Т0, L(T), dL/dT and other 

thermodynamic parameters, obtained for Ag2Te on data of 
roentgen reflections intensities [3,4] with DTA results and 
electric properties gave almost coinciding values. 

 
EXPERIMENTAL RESULTS AND THEIR  
DISCUSSION 
 
If by the analogy to Ag2Te, we take one phase as normal 

and another one as a superconductive (SC), then the 
suggested method may be applied for HTSC too. Then 
corresponding messes will have values mn and mcn. 
Dependences )B,T(ρ  (а) and   α(Т,В) (в) for the crystal 
sample Bi2Sr2CaCu2Ox are represented on fig.1.  

The characteristic dependences lny(
n

сп

m

m
y = ) on Т at 

В=0(1) and В=2,2Т(2) are  represented on fig.2. The 
corresponding masses mn and mcn are determined  from data 

)B,T(ρ and α(Т,В). Nominal temperatures T0 are 
determined by the cross point of straight lines with the 
abcissa axis. The represented straight lines are described by 
the formula: 
                      
                          y=exp[-a  (T-T0)],                            (8) 
 

where the values of α, determined from the straight lines 

slope 





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T

yln

∆
, are temperature constant of the transition. As 

it is seen, points of the «untime» reduction of ρ(T) and α(Т) 
part are declined from straight lines in the indicated 
coordinates. It indicates on the correctness of the applied 
method of mcn/mn determination for the main PT part. It is 
seen, T0 and α reduce under the influence of the magnetic 
field. In spite of the strong stretching of the low-temperature 
part of curves ρ(B,T) and α(B,Т) in the magnetic field, they 
fully placed on the straight lines. Curves of the switching 
function L(T) (at B=0 and B=2,2T), calculated by formulae 
4(a) and 3(b) with the data application α and T0, are 
represented on fig.3. 
 

 

 

 
Fig.1 Temperature dependences of resistance (a) and thermo  
          e.m.f. (b) in Bi (2212) В:1-0;2-0,1;3-0,2;4-0,5;5-0,9:6- 
          2,2Т и Bi (2223)(c) данные [7] В:1-0;2-0,01;3-0,05;4- 
         0,1;5-0,2;6-0,5;7-1;8-2;9-3;10-5;11-7;12-9;13-12Т 

 



S.A. ALIYEV 

34 

 
Fig.2 Temperature dependences of the masses distribution lny  
         at various values of the magnetic field for Bi (2212) (1-at  
          В=0;2-at В=2,2Т) and  Bi (2223) (3-B=0;4-2T;5-5T;6- 
          7T;7-12T). 
 

 
 

 
Fig.3 Temperature dependences of the switching function,  
          calculated by formulae (4) (a) and (3) (b) and its  
           derivative dL/dT for Bi  (2212) 
 
As it is seen, temperature dependences L(T) in separate 

parts differ quantitatively. It is connected with values change 
T0 and α in the magnetic field, it leads to the L(T) bias on the 
temperature. Therefore the L(T) analysis is convenient to 
carry out on the formula (3) data. It is seen, that curves l(T) 

approach the zero value at T ≈ Tk, they cross the axis at L=0,5 
curves are spreaded by the growth of the magnetic field. 

The derivatives L on the temperature  dL/dT (1′,2′) are 
represented on fig. 3(b). As it is seen, curves dL/dT (∆T) pass 
through the maximum at ∆T, and moreover the maximal 

value corresponds to dL/dT=
4
α . As far as B grows, the curve 

dL/dT becomes more sloping and the values when ∆T= 0 
reduce proportionally to a. 

Let us note, that weak magnetic fields, at which research 
for Bi (2212) was carried out, make it difficult to conclude 
about PT parameters dependence on the magnetic field with 
this aim, the data of authors of paper [7], in which the 
detailed research of ρ(T,B) in crystals 
Bi1.72Pb0.34Sr1.83Ca1.97Cu3.13O10+δ in magnetic fields to 12 T 
(fig (1c)) is carried out, are used, These data are useful not 
only because of high values of B, but as the another phase Bi 
(2223) of bismuth HTSC, having high values Tk. Straight lines 
lny(T) are represented on fig (2-7). In the case of Bi (2223) 
high-temperature parts points of curves fell out the straight 
lines. It is seen, that values α and T0 reduce strongly by the B 
growth. Data of α(B) are represented on fig.4, from which it 
is seen, that the strong reduction of α occurs at relatively 
weak fields (0-1 T). Data of L(∆T) (1-5) at various values B 
are presented on fig.5. It is seen clearly from data, that L 
approaches the zero value at ≈Tk and curves L(T) are 
spreaded by the B growth analogous results are obtained from 
temperature dependences of derivatives on the temperature 
dL/dT (fig.5) (1′-5′). As it is seen, the curve dL/dT at B=0 has 
more sharp peak and it losses the velocity as far as it removes 
from ∆T=0, the asymmetry is observed at high sloping form, 
cross the curve (dL/dT)B=0 and decrease slower. By this the 
low-temperature part of curves falls behind from it more, 
than high temperature. 

It follows from data a (B) and L(T/B), the spreading 
degree is inversely proportional to the temperature constant 
ρT-a. The obtained value a for Bi (2212) and Bi (2223) tells 
about the strong spreading of PT in them, moreover the 
spreading degree in Bi (2212) is higher, than in Bi (2223). 
Estimations show, that the spreading degree is higher in 
phase Bi (2001), than in these two phases. The spreading 
degree of PT strongly increases in the magnetic field, 
especially at relatively weak values B. The temperature 
velocity of PT grows as far as the spreading degree reduces, 
what leads to more sharp realization of PT. 

The points derivation of the premature reduction part ρ(T) 
and α(T) from the straight line (T,B) tells in favor of the fact, 
that, actually, the mechanism of SC couples formation and 
their uncoupling under the influence of the magnetic field in 
the main transition part and high-temperature part distinguish 
essentially. 

The physical nature of defects, leading to the PT 
spreading in the absence of magnetic field, may serve 
heterogeneity, connected with the presence of other bismuth 
SC phase (2201, 2212 and 2223) in each SC phase, the 
derivation from the stechiometry of multicomponent 
ingredients, the slightest oxygen lack and other imperfections 
[8,9] 



THE PHASE TRANSITION SPREADING IN BISMUTH HTSC 

 35 

Fig.4. Temperature dependences L(1-5) and dL/dT (1′-5′)  for  
           Bi (2223) B: 1,1′-0; 2,2′-0,1; 3,3′-0,2; 4,4′-2; 5,5′-12Т. 
 

Defects, leading to the spreading in the magnetic field are 
caused by the vortical state of super conductors of the second 
type, in which the vortical currents occurs spontaneously 
beginning from very weak fields )BB(B

2C1C1C 〈〈 . 

 
Fig.5  The dependence of the temperature constant of PT  a on  
          the magnetic field:  а -Bi (2212), b-Bi (2232) 

 
At the further B growth the vortex size and the value of 

the magnetic field flow, which they conduct, remain stable, 
the vortex number grows, forming alike crystals atoms the 
right lattice  L in the cross-section of the trigonal shape, 
which causes the growth of the spreading degree in them. 

 
[1] N. Rolov. Razmitiye fazoviye perekhodi, Riga-1972, 

p.311 
[2] B.N. Rolov. Izv. AN Latviya SSR, ser. phys.techn. 

nauk,4,33, 1983 
[3] K.P. Mamedov, M.F. Cajiyev, Z.D.Nuriyev.  DAN 

SSR, 321, 1, 94, 1976 
[4] K.P. Mamedov, M.F. Cajiyev, Z.D.Nuriyev. FTT, 

19,7, 1977 
[5] S.A. Aliyev, F.F. Aliyev, G.P. Pashayev.  

Neorganicheskiye materiali, 29, №   8, 1073, 1993 

[6] S.A. Aliyev, F.F. Aliyev, Z.O. Gasanov. FTT, 40, №9, 
199 

[7] G.Grassj, F.Marti, Y.Huang, A.Perin, R.Flukiger. 
Physica,281,271,1997. 

[8] S.A.Aliev, D.A.Bagirov,S.S.Ragimov.at.al. 
J.RareEarths,№3,1060,  1991 

[9] S.A.Aliev, S.S.Ragimov and V.M.Aliev. Fiz.Nizkich 
Temperatur, 22, 679, 1996. 

 
 С. А. Ялийев  

 
ЙТИК БИСМУТДА ФАЗА КЕЧИДИНИН ЙАЙЫЛМАСЫ 

 
Бисмут (2212) вя (2223) кристалларынын електрик хассяляри йайылмыш фаза кечидляри нязяриййяси чярчивясиндя изащ едилмишдир. 

Фаза кечидляринин йайылма дяряжясини характеризя едян параметрляр мцяййян едилмишдир. Эюстярилмишдир ки, йцксяк температурлу 
ифраткечирижи (ЙТИК) висмутда фаза кечидляри эцжлц йайылма характериня маликдир вя магнит сащясинин тя’сири иля йайылма дяряжяси бир 
тяртиб артыр. 

 
С.А. Алиев 

 
РАЗМЫТИЕ ФАЗОВОГО ПЕРЕХОДА В ВИСМУТОВЫХ  ВТСП 

 
Результаты исследования электрических свойств висмутовых кристаллов (2212) и (2223) интерпретированы в рамках теории 

размытых ФП. Определены параметры, характеризующие степень размытия ФП. Показано, что в висмутовых ВТСП фазовые 
переходы носят сильно размытый характер и под действием магнитного поля степень размытости возрастает до одного порядка. 
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Field transistors with controlling Shottky type junctions of vertical structures on the basis of SiC/Si material with various length of 

channels have been investigated. 
It is shown, that increase of fast action in the wide band of temperature (up to 700 °C) is reached under extremely low lengths of the 

channel (<100 nm) and thermocorrelated supply voltage. 
 

Field effect transistors (FET) with controlling Shottky 
type junctions have some advantages in comparison with 
bipolar and MOS-transistors, related with possibility to use 
more short channels and providing for higher speed [1]. 

One of major limitations for minimal length of ShFET is 
connected with effect of modulation of channel's length, 
which leads to triode character of V-A characteristics [2]. 

In order to eliminate the modulation of the channel, spe-
cial constructions of normally closed ShFET with vertical 
channels of n- and p-type, named as transistors with static 
induction (SIT) were developed [3], where the channel was 
the area of space charge (ASC) for whole band of working 
voltage at the transistor exit leads. Control of the drain cur-
rent Id is carried out through changing of the height of poten-
tial barrier of source-channel, occurred as a result of diverse 
level of alloying of source and drains areas (fig. 1). 

drain

gate

source

LК n--

n+

n+
WG

y

x

 
Fig. 1. Structure of n-channel SIT with Shottky barrier. 
 
Height of the potential barrier is determined by a voltage 

gate-source Us and lightly depends on voltage of drain-source 
Ud due to low thickness of channel by source. 

Major factors restricting a wide use of SIT as submicron 
elements of superhigh speed integral circuits, are: 

- triode character of V-A characteristics of SIT, condi-
tioned by dependence of height of potential barrier in the 
channel from voltage gate-source and drain-source, also by 
modulation of ASCs width in the channel by voltage Ud; 

- presence of passive areas of spatial charge between 
drain-source contacts and the gate. 

Using of silicon carbide as a base material, which ex-
ceeds silicon on major parameters [4]: -wide bandgap, per-
mitted working temperatures, speed of drift of charge carriers 
(2,5·107cm/s) allows to eliminate those shortcomings [5]. 
Using of heteroelectronic structures SiC/Si broadens the 
functional capabilities of the elements and allows technologi-
cal integration of them with elements of integrated circuits [6]. 

a)  

b)  

c)  

d)  
Fig. 2. Volt-ampere characteristics of ShFET with different  
            length of channel 
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The technology of forming of silicon carbide structures 
on the silicon doesn't differ in principle from processes of 
forming of silicon films and is carried out on the typical 
equipment [7, 8]. 

Heteroepitaxial layers were grown-up by the method of 
vapor-phase epitaxy in the open system: diffusion technology 
in two-zone oven was used. Hydrogen was used as gas-
carrier: in first zone the free carbon is associated with hydro-
gen and is carried to the zone of growth of semiconductor 
film. The temperature of carbidized pedestal at which hydro-
carbons become decomposed and the silicon substrate is car-
bidized is equal to 1360-1380 °C. 

Ohmic contacts for SiC films were formed by method of 
thermal deposition of nickel by further pulse type thermo-
processing by non- coherent IR radiation on the technology 
described in [9]. 

 

 
Fig. 3. Dependence of ShFET logic elements switching delay  
           time on the temperature. 
 
Output characteristics of depleted ShFET with space 

charge limited current (SCLC), made on the basis of silicon 
carbide with -type channel for values of the channel length 
L=30 nm (fig. 2a), L=40 nm (fig. 2b), L=100nm (fig. 2c) and 
L=250 nm (fig. 2d) are given in fig. 2. The results of meas-
ures have shown, that on channels length equal to 30-100 nm, 
V-A characteristics has a pentode but by increase of the chan-
nel's length up to 250 nm, these characteristics become near 

near to linear type ones (fig. 2d). Sharp increase of the drain's 
current on L=30 nm (fig. 2a) is conditioned by the tunnel 
effect, occurred under minimal length of the channel. 

Dependence of time delay of switching of integrated 
logic element made on the basis of complementary ShFET 
with SCLC from temperature by voltage source Us=0,2 V is 
given in fig. 3. Increase of switching delay is connected to the 
temperature dependence of the carrier's mobility. 

In order to increase fast-response and to widen the tem-
perature band of elements made at the basis of ShFET the 
thermocorrelated supply have been used. This means, that in 
the process of functioning of IC, the supply voltage was de-
creased in proportion to the temperature change of height of 
potential barrier of source-drain. This makes it possible to 
curtail the time delay of logic elements switching made on 
the basis of ShFET down to parts of nanoseconds, i.e. more, 
than 5 times (fig. 4). 

 

 
Fig. 4. Dependence of delay time on temperature under thermo 
            correlative supply voltage 

 
As a result, the pentode character of V-A characteristics, 

the high steepness of transistors, the low values of time de-
lays allow to design super high fast action IC on the basis of 
field transistors with controlling Shottky type junctions.
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ИФРАТ ЙЦКСЯК ЖЯЛДЛИЙЯ МАЛИК ШОТТКИ САЩЯ ТРАНЗИСТОРЛАРЫ 

 
Мцхтялиф узунлуглу каналлы SiC/Si ясасында вертикал структура малик идаряедижи Шоттки кечидли сащя транзисторлары тядгиг 

едилмишдир. 
Эюстярилмишдир ки, эениш температур диапазонунда (700 °С-йя гядяр) жялдлийин артырылмасы, каналын ифрат кичик узунлугларында 

(<100 нм) вя термокоррелйасийа олунмуш гида эярэинликляри заманы ялдя едилир. 
 

Ф.Д. Касимов, А.А. Мамедов 
 

ПОЛЕВЫЕ ТРАНЗИСТОРЫ ШОТТКИ СО СВЕРХВЫСОКИМ БЫСТРОДЕЙСТВИЕМ 
 

Исследованы полевые транзисторы с управляющим переходом Шоттки вертикальной структуры на основе SiC/Si с 
различными длинами каналов. Показано, что повышение быстродействия в широком диапазоне темперпатур (до 70°С) достигается 
при сверхмалых длинах канала (<100 нм) и термокоррелированном напряжении питания.  
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THE ZEEMAN SPLITTING IN KANE TYPE SEMICONDUCTOR WIRE 
 

A.M. BABAYEV 
Institute of Physics, Azerbaijan National Academy of Sciences, 

370143 Baku, Azerbaijan, e-mail: semic@lan.ab.az 
 

The electronic states of a Kane type semiconductor quantum wire with and without  magnetic field are theoretically investigated and 
compared with those of a quantum wire of the same size. The eigenstates and eigenvalues of the Kane’s Hamiltonian are obtained. Numerical 
calculations are performed for a hard-wall confinement potential and electronic states are obtained as functions of the magnetic field. We 
calculated the size dependence of the effective g-values in bare InSb, GaAs and CdSe nanocrystals. It has been seen that the effective g-value 
of the electrons is decreased with the increasing of quantum wires radius. 
  

1. Introduction 
 
In recent years, there have been many studies about optic 

properties of quantum nanostructures such as quantum dots, 
quantum wires, quantum wells and others [1-3]. It is known 
that the application of a magnetic field could provide 
additional information about the properties of electrons in 
solids and in nanostructures. Energy spectrum of carriers in 
quantum dots and quantum wires, were considered 
theoretically in [4-8]. In [9] in the absence of magnetic field 
quantum wire energy spectra and wave functions were 
obtained for two band Kane model in the case of zero spin 
orbital interaction and zero magnetic field. The electron 
energy states were investigated in the uniform magnetic field 
directed along the quantum wire [4]. In this study the free 
electron model was used. The energy spectrum was 
determined as a function of a quantum number m for the 
finite and infinite potential cases from the boundary 
conditions. The energy spectrum in the dependent of 
magnetic field is found to have a minimum for the negative 
values of quantum number m. 

Magneto-optical properties of quantum dots in 
semiconductors have been considered for the model of hard-
wall confinement [6] when the real band structure of InSb-
type materials (narrow energy gap and strong spin-orbital 
interaction) was taken into accaunt. The results of [6] are in a 
good agreement with the magneto-optical experiments in 
InSb quantum dots [10]. The effect of quantum confinement 
and the nanocrystal surface on the g-factors are studied in [8] 

for the ground and excited electron states in bare CdSe and 
ZnO nanocrystals. The calculation was made by using 8x8 
and 14x14 band Kane models second-order k

r
. pr perturbation 

theory. The spin-orbital interaction and the contribution of 
the electrons to the g factor were presented in details in 
[11,12]. For the calculation of the electron g-values in [11] 
the eight-band Kane`s model was used where the 
nonparabolicity of the electron and light-hole bands and the 
complex structure of the valence bands had been  taken into 
account simultaneously. This model describes the energy 
band structure around the Γ point of the Brillouin zone very 
well. The electron g-factor values for quantum wires and 
quantum dots using the parameters of GaAs/Alx Ga1-x As 
hetero-system were calculated by perturbation theory[11]. It 
was obtained that the g-factor is anisotropic (gıı≠ g⊥) for 
quantum well and isotropic in cylindrical wire [12]. 

In this work, using three-band Kane`s model including the 
conduction band, light and spin-orbital hole bands, the 
electron spectrum with and without magnetic field and 
electron effective g-factor of quantum wire are calculated. In 
opposite to  [11,1available 2] we take the potential of the 
quantum wire to be infinitive and consequently the wave 
functions to be zero at the boundary. 

In the eight-band Kane's Hamiltonian the valence and 
conduction bands interaction is taken into account via the 
unique matrix element P (so called Kane's parameter). The 
system of Kane equations including the nondispersional 
heavy hole bands have a from [12, 13]: 
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Here P is the Kane parameter, Eg - is the band gap energy, 
∆ - is the value of spin-orbital splitting and ,yx ikkk ±=±  

∇−=
rr

ik . 
 
2. Zero magnetic field 
 
Substituting expressions (3)-(8) into formulas (1) and (2) 

we obtain: 
It needs  

    0C))
EE
1

EE
2(

3
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gg

2
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∆++

+
+

−−     (9) 

where ∆3 three dimensional Laplacian. 
In cylindrical coordinates the eigenfunction is 
 
 )(R)zikimexp(AC 2,1z2,12,1 ρφ +=            (10) 
 

where A1,2 is a normalization factor and the radial function 
R(ρ)satisfies
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The Kane's parameter P is connected with effective mass 

mn and can be written in a usual way [15].  
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After substitution of the values of P2 from (12), the 

equation (11) can be rewritten in the form: 
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Equation (13) is Bessel's differential equation [16], with 

the solution  bounded at ρ=0  being 
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For an infinite wall at radius R, the boundary condition is  
0)R(R 2,1 = , so the eigenvalue equation is 

  
                             0)R(Jm =χ                                (17) 

 
Equations (16) and (17) together show that the radial 

eigenvalue spectrum is 
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where zmp is the p-th root of the m-th Bessel function J(z). 

Equation (18) determines the energies of electrons, light 
holes, and the spin-orbit split-off band of holes. This equation 
can be useful for analyzing the influence of nonparabolicity 
on the energy spectrum of electrons in a quantum wire. 

 

 
Fig.1. The dependence of the lowest quantum size levels in  
            InSb quantum wire as function of the quantum wire  
            radius. (1) for parabolic dispersion law. (2) for Kane’s  
            dispersion law. 
 
In fig.1, the dependencies E(R) for two cases are 

presented: a) electrons with parabolic dispersion law, b) 
electrons with Kane's dispersion law for InSb quantum wire. 
According to this figure, with increase of R, the electron 
energy levels in both cases are close to each other. At rather 
small sizes of R, the variance electron dispersion laws 
become more and more important and therefore, the curves 
for E(R) keep away from each other. 

  
3. Applied magnetic field, infinite step 

 
The atomic Zeeman splitting is incorporated by adding 

the terms Hg
2

1
B0µ±  the diagonal of Kane's Hamiltonian, 
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Bµ  is the Bohr magneton, g0 is the Lande effective factor. 
For a uniform magnetic field,  H directed along the z axis,  
the vector potential may be choosen in the form  
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and ±k  have the forms  
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Substituting expressions (3)-(8)  into formulas (1) and (2), 

and using the (20), (21) relations we obtain: 
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where zL  is a z component of in angular momentum operator 

L, 222 yx +=ρ  and Hg
2

1
EE B01 µm= . 

If one  seeks the solution of equation (22) in cylindrical 
coordinates in the form 
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he obtains for the radial function  Φ(ξ) the following 
equation  
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Equation (24) is the canonical form of Kummer's equation 

for the confluent hypergeometric function. In (23) 2
H
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ξ =  

is the dimensionless variable. The solution of (24) that is 
bounded  at ρ =0 is      
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c =ω is the cyclotron frequency, 
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the magnetic length and 
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are the parameters of the Kummer function in standard 
notation. The boundary conditions which correspond to the 
infinite potential at R=ρ are 0C 2,1 = . These lead to the 
eigenvalue equations 
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We can  find the energy spectrum )k,l,m,R(E zH  from 

equation (26). It is necessary for this to find 1α and 2α  from 
equation (28) for a given R, azimuthal quantum number m 
and lH, and then to substitute them into equation (26). For an 
infinite medium, ∞→R , equation (28) is replaced by the 

requirement that M be bounded as ∞→2
H

2

l2

R
. This simply 

means that α1,2 is a negative integer [16], 
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leading to the result  

 

  c
2
H

2
zc

g1
c

g1gg

gg1g11 lk
2
1

)2E3E3(2
)

2
1n(

)2E3E3)(E(E
)2E3)(EE)(EE(E

ωω
∆

∆
ω

∆∆
∆∆

hhh +
++

±+=
+++

++++
            (30) 

 
with  

                       mln +=     for  m >0                         (31)  
                   ln =    for 0m ≤ .                      (32) 

The expression (30) is the same as the expression of the 
energy spectrums of carriers of bulk Kane type 
semiconductors in the magnetic field [15]. 

The magnetic field dependencies of electrons energy 
spectrum for the lowest sequences of m at the subbands 
bottom (kz=0) for InSb quantum wire with R=300Å, in which 
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the non-parabolicity was taken into account, are shown in 
Fig.2 (for g0=0).  

 

 
 
Fig.2. Lowest part of the energy spectrum of electrons as a  
          function of the magnetic field in cylindrical quantum  
          wires for the InSb. 
 

 
Fig.3. The electron g factor calculated as a function of the  
            radius in cylindrical quantum wires for GaAs. 
 

 
Fig.4. The electron g factor calculated as a function of the radius  
           in cylindrical quantum wires for InSb. 
 

 
 
Fig.5. The electron g factor calculated as a function of the radius  
           in cylindrical quantum wires for CdSe. 
 
The light hole and spin-orbital splitting subbands can be 

obtained by the same way for two other roots of equation 
(26). As it is seen from fig.1 the magnetic field dependence 
of energy has a minimum only for subbands with the negative 
m. These results are in good agreement with those given in 
[4]. 

Note that for the quantum wire with the finite length d 
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and the minimal value for kz must be taken as 
d

π
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The expression for the g-factor obtained in the second 
order of p.k rr  perturbation theory has the form [15] 
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But in magneto-optical experiments,  transitions from the 
bottom of the subbands take place and the effective g-factor 
can be determined from the Zeeman splitting of subbands 
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EE

)E(g
Bµ
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Here E↑ and E↓ are the electron energy for spin +z and -z 

directions, respectively. Note that the g-factor determined by 
the equations (34) and (35) are the same if one considers the 
bottom of the lowest subband. 

Figures 3, 4 and 5 show the electron g-factor dependence 
on R calculated by the equation (35) for GaAs, InSb and 
CdSe quantum wires for the fixed magnetic field value 
H=0.5T, respectively. As seen from fig.3 in GaAs quantum 
wire, the electron g factor value changes its sign with a 
radius. The following band parameters have been used for 
GaAs Eg =1.52 eV, ∆=0.34  eV, 2pcv

2/m0=28.9 eV (here 
pcv=m0P/h, m0 is the free-electron mass) [11]. The 
contribution of remote bands is taken into account by adding 
the constant ∆g=-0.12 to the Kane’s model values of g [12]. 
This result is also found in [11] for GaAs/Al0.35 Ga0.65 as 
structures in the finite barrier case. It is obvious that the same 
will occur in the case of fixed R with increasing of magnetic 
field. The figure which shows the g-factor dependence on R 
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for CdSe (figure 5) is in good agreement with the reference 
[8]. 

It should be noted that the obtained results can be applied 
to quantum wires of InAs and zero-gap semiconductor HgTe 
and narrow-gap semiconductor Cd1-x HgxTe also. 

 
4. Conclusion 
In this work using the eight band Kane's model the 

electron spectrum with and without magnetic field and 

electron effective g-factor for quantum wire is calculated. It 
was shown that the effective g-factor of electrons decreases 
with increasing of quantum wires radius and changes its sign 
for GaAs quantum wires. 

The size dependence of the spectra of electrons in A3B5 
and A2B6-type semiconductor cylindrical quantum wires was 
studied. It was taken into account the nonparabolicity of the 
spectrum of light holes, electrons and spin-orbit splitting 
valence band. 
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Ф.Ь. Ифифнум 

 
ЛУНТ ЕШЗДШ НФКЭЬЛУЮШКШСШ  ЛМФТЕ  ЬЦАЕШДДЦКВЦ ЯУНЬФТ ЗФКЮФДФТЬФЫЭ 

 
Лунт ешздш нфкэьлуюкшсш лмфте ьцаешддцквц ьфйтше ыфрцыштвц мц ыфрцтшт ыэаэк йшньцештвц удулекщт рфддфкэ ефзэдьэж мц унтш бдюъдъ 

нфкэьлуюкшсш лмфте ьцаешддшт удулекщт рфддфкэ шдц ьъйфншыц увшдьшжвшк. Лунт рфьшдещтшфтэ ъюът ьцчыгыш йшньцедцк мц вфдхф агтлышнфдфкэ 
ефзэдьэжвэк. Цвцвш руыфидфьфдфкдф ыщтыгя ьцрвгвдфжвэкэсэ зщеутышфд ъюът удулекщтгт утукошыштшт ьфйтше ыфрцыштвцт фыэдэдэхэ 
ефзэдьэжвэк. ШтЫи, ПфФы мц СвЫу тфтщлкшыефддфкэ ъюът удулекщтдфкэт уааулешм п-афлещкгтгт ышыеуьшт бдюъыътвцт фыэдэдэхэ 
руыфидфтьэжвэк. Пбыецкшдьшжвшк лш, бдюъ лшюшдвшлсц п-афлещкгт йшньцеш фкеэк.  

 
А. М. Бабаев 

 
ЗЕEМАНОВСКОЕ РАСЩЕПЛЕНИЕ В КЕЙНОВСКИХ ПОЛУПРОВОДНИКОВЫХ КВАНТОВЫХ 

ПРОВОЛОКАХ 
 

Найдены электронные состояния в кейновских полупроводниковых квантовых проволоках в магнитном поле и в отсутствии 
поля. Проведены сравнения с обычной полупроводниковой квантовой проволокой того же размера. Получены собственные 
значения и собственные функции кейновского гамильтониана. Проведены численные расчеты для бесконечного ограничивающего 
потенциала и найдены электронные состояния в зависимости от магнитного поля. Рассчитаны величины электронного 
эффективного g-фактора в зависимости от размера в наноструктурах полупроводников InSb, GaAs, и CdSe. Показано, что значение 
эффективного g-фактора растет с уменьшением размера квантовой проволоки. 
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PRESSURE AND TEMPERATURE EFFECTS ON ELECTRONIC SPECTRA  

OF TlGaSe2 TYPE CRYSTALS 
 

K.R. ALLAKHVERDIYEV, T.G. MAMMADOV, R.A. SULEYMANOV, N.Z. GASANOV 
Institute of Physics of the Azerbaijan National Academy of Sciences 

H. Javid ave. 33, Baku, 370143 
 

The deformation effects in electronic spectra of ternary layered TlGaS2, TlGaSe2 and TlInS2 semiconductors are considered. It is shown 
that the influence of hydrostatic pressure, thermal expansion, variation of composition in solid solutions on the band gap of investigated 
crystals can be described in the framework of one common model of deformation potentials. 

This model is close to that in layered semiconductors of A3B6 group and testifies the fact that the main principles of formation of band 
structure in these two groups of layered crystals are the same. 

 
 1. Introduction 

 

The ternary TlGaS2, TlGaSe2 and TlInS2 semiconductors 
have layered crystalline structure and according to existing 
data [1-5] all three compounds crystallize to the same 
monoclinic structure. It’s shown that monoclinic structure of 
these crystals is very close to tetragonal, and due to absence 
of anisotropy in the layers plane elastic and thermal 
properties can be treated even in the framework of hexagonal 
structure [6, 7]. 

The great number of investigations of ternary 
compounds concentrates on the phase transitions, which are 
observed obviously at least in TlGaSe2 and TlInS2 [5, 8]. It’s 
known, that both of these crystals undergo a phase transitions 
with lowering the temperature from paraelectric phase to 
incommensurate phase (Ti=216K in TlInS2 and Ti=120K in 
TlGaSe2) and then to ferroelectric phase (Tc=202K in TlInS2 
and Tc=107K in TlGaSe2) with quadrupling of unit cell along 
the “C” axes. 

The influence of phase transitions on different physical 
properties in particular on the electronic spectra near the 
absorption edge is studied in various works [8-10]. However, 
it’s difficult to interpret the obtained results because of lack 
of the model explaining the deformation effects in ternary 
layered semiconductors (TLS). The construction of such a 
model is a main goal of present work. 

 
2. The model of deformation potential in ternary 
layered TlGaS2, TlGaSe2 and TlInS2 semiconductors. 
 

First of all the results of investigations of deformation 
effects in TLS are summarized below. 

1. In [11] the unusual behavior of exciton absorption peak 
with temperature was observed in TlGaS2: the energy 
position of exciton peak (Eexc) was shifted to the higher 
energies with increasing temperature in 4,2÷200K range in 
which exciton absorption peak was observed (fig.1). 

Because of lack of appropriate deformation potentials it 
was not possible to evaluate the contribution of lattice 
deformation to the temperature dependence of energy gap 
(Eg) in TlGaS2. In figs. 1 and 2 the temperature dependences 
of exciton positions in TlGaSe2, TlGaS2 [11], TlInS2 [10], 
which reflect the Eg (T) dependences, and linear expansion 
coefficients parallel (α║) and perpendicular (α⊥) to the layers 
plane for all three crystals [7, 12, 13] are shown. As it is seen 
from fig.1 the Eexc (T) dependences in TlGaSe2 and TlInS2 are 
quite different from that in TlGaS2. At the same time the 
α║(T) and α⊥(T) dependences are very close, for example, in 

TlGaS2 and TlInS2  in the temperature region far from phase 
transition point in   TlInS2 (fig.2). 

 
 

 
Fig.1. Temperature dependences of exciton energies in TlGaS2  

(1) [11], TlInS2 (2) [10] and TlGaSe2 (3) [11]. 
 

2. In [8] the influence of hydrostatic pressure on the 
absorption edge of all three TLS was investigated at room 
temperature – the results are presented in fig.3. At small 
pressures (P≤ 0,5GPa) the behavior of band gap with pressure 
is the same in all crystals: baric coefficient, dEg/dP, is 
negative, which is typical for almost all semiconductors with 
layered structure [14]. With increasing of pressure, however, 
the behavior of baric coefficients in TLS becomes different. 

In TlInS2 dEg/dP changes the sign at pressures P≥0,59 
GPa and remains positive up to P~0,9 GPa. At higher 
pressures dEg/dP in TlInS2 again changes the sign and 
becomes negative but the absolute value of dEg/dP increases: 
dEg/dP≈-22×10-11eV×Pa-1 (dEg/dP=-8,5×10-11eV×Pa-1 at 
P<0,59GPa). It’s shown in [13, 14], that phase transitions 
take place in TlInS2 at pressures P~0,59 GPa and P~1,0 GPa. 

In TlGaSe2 baric coefficient remains negative up to 
P~0,92 GPa, dEg/dP=-12,5×10-11 eV×Pa-1 . At P>0,92 GPa 
dEg/dP stays negative, but |dEg/dP| increases drastically, 
dEg/dP= -20×10-11 eV×Pa-1 . 

In TlGaS2 dEg/dP≈-7,2×10-11eV×Pa-1 and remains practically 
unchanged in all investigated range of pressures. 

Again, because of lack of deformation potentials it was 
not possible to interpret the common and different features of 
baric coefficients behavior in TLS. 
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3. In [17] the influence of uniaxial, perpendicular to the 
layers plane, pressure on the exciton absorption peak position 
in TlGaS2 and TlGaSe2 were investigated at low 
temperatures, 4,2K<T<100K. Baric coefficients were 
appeared to be approximately the same in both crystals: 
dEg/dP≈-3×10-11eV×Pa-1 in the investigated range of 
temperatures. 
 

 
Fig.2. Linear expansion coefficients for TlGaS2, TlGaSe2 and,  
          TlInS2 parallel (1) and perpendicular (2) to the layers  
           plane [7, 12, 13]. 
 
We tried to explain all results described above on the 

basis of a simple model, introducing two deformation 
potentials D⊥ and D║. In this model the dependence of Eg on 
deformation is: ∆Eg=D⊥U⊥+2D║U║, where U║ and U⊥ 
deformations in the layers plane and in the perpendicular 
direction, respectively. Such a model allowed explanation of 
all types of deformation phenomena in layered 
semiconductors of A3B6 group [14]. 

For determining the deformation potentials D⊥ and D║ 
the results of at least two independent deformation 
experiments are needed. We have chosen the results of 
influence of hydrostatic pressure on the optical absorption 
spectra (fig.3). The results of uniaxial deformation 
experiments which are known for TlGaS2 and TIGaSe2 at low 
temperatures can not be used because, as it was shown in 
A3B6 group layered crystals, the deformation potential D⊥, 
may depend strongly on temperature and pressure. 

Supposing that TlInS2, TlGaSe2 and TlGaS2 have close 
deformation potentials and using the results of hydrostatic 
pressure influence on Eg at low pressures  (P≤0,5GPa ) the 
deformation potentials, D|| and D⊥, were obtained. The data 
for TlInS2 and TlGaSe2 were used because only for these 
crystals the values of elastic constants are known [6] (table 
1). By calculating D|| and D⊥ in TlInS2 and TlGaSe2 we used 
the value of elastic constant C13 =1,5x1010 Pa which is almost 
the same in the majority of layered crystals [14]. This elastic 
constant was not measured in TlInS2 and TlGaSe2 because of 
significant experimental difficulties that always appear 
measuring this elastic constant in layered crystals. Simple 
calculations [14] give the values: D||=-7,3eV and D⊥=11,9eV. 
Below we’ll explain the results of other deformation 
experiments on the basis of obtained values of D|| and D⊥. . 

 
Fig.3. Pressure dependences of energy gaps obtained from  
          absorption edge behavior with pressure at 300K in  
          TlGaS2 (1), TlInS2 (2) and TlGaSe2 (3) [8]. 
 
Using the thermal expansion curves (fig.2) the 

contribution of thermal expansion to Eg(T) dependences can 
be obtained for all three crystals:  

a) in TlGaS2 this contribution gives ∆Eg≈+20meV in 
4.2÷100K temperature range; 

b)  in TlGaSe2 this contribution must lead to ∆Eg=+25meV 
due to small linear expansion in the layers plane, α║; 

c)  the positive shifts of ∆Eg =+25meV with temperature 
must be in TlInS2  in the same temperature region. 

As it is seen from experimentally measured Eexc 
dependences (fig.1) the results of calculations are appeared to 
be true only for TIGaS2 - in TlGaSe2 and TlInS2 Eexc 
decreases with temperature. However, it can be shown, that 
this discrepancy between calculations and experiment are not 
due to the method used for the calculation of D|| and D⊥.. 
Really, as it was noted above, unlike TlGaS2, both TlGaSe2 
and TlInS2 are in ferroelectric phase at 4,2-100K due to phase 
transitions, which they underwent when temperature became 
lower. It is shown in [11] that addition of sulfur into TlGaSe2 
in TlGaSe2(1-x)S2x solid solutions leads to Eg(T) dependences  
which  are typical for TlGaS2 beginning from x=0,1. At the 
same time there are no evidences of phase transition typical 
for TlGaSe2 in solid solutions TlGaSe2 (1-x) S2x at x≥0,25 [18]. 
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Thus, unusual behavior of Eg(T) in TIGaS2 and TlGaSe2(1-x)S2x  
with x≥0,1 are typical for crystals without phase transitions 
and deformation potentials D|| and D⊥ obtained above are true  
for TIGaS2    and paraelectric phases of TlInS2 and TlGaSe2.  

The other type of deformation effects is the change of 
band gap in TlGaSe2(1.x) S2x solid solutions, where the 
changing of lattice parameters can be interpreted as effective 
lattice deformation. Using the lattice parameters of TlGaSe2 
and TlGaS2 (table 1) and deformation potentials D|| and D⊥. 
the change of Eg very close to experimental value can be 
found: ∆Eg=450meV. Thus, deformation potentials D|| and 
D⊥., obtained above, can describe the results of at least four 
independent deformation experiments.  

                                                                                        Table 1.  
Lattice parameters and elastic constants in TlGaS2, TlGaSe2 and TlInS2. 

 
Lattice parameters, 

 Å [1-3] 
Values of elastic constants,  

1010Pa [6] 
 

Crystals 
a b c C11 C12 C33 C44 

TlGaS2 10,29 10,29 15,28 - - - - 

TlGaSe
2 

10,77 10,77 15,64 6,42 3,88 4,37 0,5 

TlInS2 10,95 10,95 15,14 4,49 3,05 3,99 0,5 

 
As it was shown in [14] the deformation potentials 

obtained at room temperatures and low pressures cannot be 
used determining the energy shifts at low temperatures, and 
high pressures in layered crystals of A3B6 group. The same 
seems to be true also for TLS. For example, using the D|| and 
D⊥obtained above the values dEg/dP≈34×10-11eV×Pa-1 for 
TlGaSe2 and dEg/dP≈-41×10-11eV×Pa-1 for TlInS2 are 
obtained for uniaxial perpendicular to the layers plane 
pressures  instead  of  experimentally obtained value 
dEg/dP≈-3×10-11eV×Pa-1 for low temperatures. To explain the 
significant changes of baric coefficients with pressure in 
TlInS2 and TlGaSe2 one must also suppose that deformation 
potentials strongly depend on pressure. As in the case of 
layered crystals of A3B6 group to explain the discrepancy 
between experimental results and calculations, it should be 
assumed that deformation potential D⊥, describing the energy 
shifts at deformations perpendicular to the layers plane 
decreases (or even changes its sign from positive to negative) 
with the lowering of the temperature or pressure increasing. 

The nature of such a behavior of deformation potential 
D⊥ is due to peculiarities of the band structure of layered 
crystals of A3B6 group. According to band structure 
calculations [14] interlayer interaction leads to splitting of the 
top of valence band and bottom of conduction band of layer 
crystal. Under deformation when interlayer distances 
decrease, splitting increases and leads to decrease of Eg. On 
the other hand the compression of layers in both directions 
leads to increase of Eg. Thus the final change of band gap 
depends on two competitive parts having opposite signs. 
Since the interlayer forces increase faster than intralayer ones 
with temperature lowering or pressure increasing the baric 
coefficient may decrease by absolute value or even change 
the sign from negative to positive with temperature or 

pressure. For example, the baric coefficients for direct gaps in 
A3B6 group layered crystals change the signs from negative to 
positive with temperature lowering (T≤77K) and pressure 
increasing (P≥0,5GPa). At the same time the baric 
coefficients for indirect gaps in A3B6 group crystals do not 
change the signs and remain negative but the absolute values 
of baric coefficients decrease significantly as described above 
for TLS for uniaxial pressures at low temperatures. So, as it’s 
seen from obtained results the deformation phenomena in 
TLS and layered crystals of A3B6 group have many common 
features. 

 
3. Conclusion 
 
The deformation potentials D|| and D⊥ obtained above for 

TLS TlGaSe2, TlInS2 and TlGaS2 have allowed making 
following conclusions:    
1. Deformation effects in TLS are very close to that observed 
in layered semiconductors of A3B6 group: 

a) deformation potentials D|| and D⊥ have the opposite 
signs, and behavior of band gap Eg under pressure depends on 
two competitive contributions: positive one due to contraction 
of layers  and negative one due to contraction of interlayer 
distances ; 

b) deformation potential D⊥ depends on pressure and 
temperature due to different behavior of elastic constants 
determining the deformation of layered crystals parallel and 
perpendicular to the layers plane. 

The similarity of deformation effects in TLS and A3B6 
group crystals leads to the conclusion that the band structures 
of these two types of crystals have the following common 
feature: Eg decreases when the interlayer distances decrease 
and Eg increases when intralayer distances decreases. 
2. At low pressures (P<0,5 GPa) and room temperature all 
three investigated crystals have the close band structures and 
deformation potentials. The differences in contribution of 
thermal expansion to Eg(T) dependences in TlInS2 and 
TlGaSe2 on one hand, and in TlGaS2 on the other hand are 
due to phase transitions, which take place in TlInS2 and 
TlGaSe2 with temperature. The different behavior of baric 
coefficients with pressure may be due to different degree of 
elastic anisotropy and also to the phase transitions in TlInS2 
and TlGaSe2 at high pressures. 
3. It was mentioned above in introduction that according to 
the literature phase transitions that take place with 
temperature in TlInS2 and TlGaSe2 have the same natures. 
However, as it can be seen from fig.2 the deformation of 
lattices with temperature in the layers plane is quite different 
and phase transitions reveal itself in different way in TlGaSe2 
and TlInS2. The analogous conclusion was made in [19] 
investigating the temperature dependences of elastic 
constants in TlGaSe2 and TlInS2:  near phase transition points 
the elastic constants in TlInS2 and TlGaSe2 behave in 
somewhat different way. The pressure dependences of baric 
coefficients in TlGaSe2 and TlInS2 also demonstrate 
differences at pressures when   phase transitions in both 
crystals take place. Though it's difficult to interpret the nature 
of such differences, one can conclude that baric coefficients 
behavior with pressure also testifies the differences in the 
nature of phase transitions in TlInS2 and TlGaSe2. 
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K.R. Allahverdiyev, T.Q. Mяmmяdov, R.A. Sцleymanov, N.Z. Hяsяnov 
 

TlGaSe2 ТИПЛИ КРИСТАЛЛАРЫНЫН ELEKTRON SPEKTRLЯRИNЯ ТЯЗЙИГ ВЯ  
ТЕМПЕРАТУРУН ТЯСИРИ 

 
TlGaS2, TlGaSe2 vя TlInS2 цъqat laylы yarыmkeъiricilяrin elektron spektrlяrindя deformasiya effektlяrinя baxыlmыш vя gюstяrilmiшdir ki, 

hidrostatik tяzyiqin, temperatur geniшlяnmяsinin vя bяrk mяhlullarыn tяrkibinin dяyiшilmяsinin tяdqiq olunan kristallarыn qadaьan olunmuш 
zonasыna tяsiri deformasiya potensialыnыn цmumi modeli ъяrъivяsindя tяsvir oluna bilяr. 

Mяlum olmuшdur ki, gюstяrilяn model A3B6 qrupun laylы yarыmkeъiricilяri цъцn deformasiya potensiallarы modelinя yaxыndыr. Bu isя onu 
gюstяrir ki, hяr iki qrup laylы kristallarыn zona strukturlarыnыn яsas formalaшmasы prinsiplяri eynidir.  

 
К.Р. Аллахвердиев, Т.Г. Мамедов, Р.А. Сулейманов, Н.З. Гасанов 

 
ВЛИЯНИЕ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ НА ЭЛЕКТРОННЫЕ СПЕКТРЫ 

КРИСТАЛЛОВ ТИПА TlGaSe2 
 
Рассмотрены деформационные эффекты в электронных спектрах тройных слоистых полупроводников TlGaS2, TlGaSe2 и 

TlInS2. Показано, что влияние гидростатического давления, температурного расширения, изменения состава твердых растворов на 
ширину запрещенной зоны исследуемых кристаллов может быть описано в рамках общей модели деформационных потенциалов. 

Оказалось, что указанная модель близка к модели деформационных потенциалов для слоистых полупроводников группы A3B6. 
Это свидетельствует о том, что основные принципы формирования зонной структуры этих двух групп слоистых кристаллов одни и 
те же. 
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RESONANT INTERACTION OF ULTRASOUND WAVE WITH ELECTRONS  

IN QUANTUM WIRE 
 

G.B. IBRAGIMOV 
Institute of Physics of the Azerbaijan National Academy of Sciences 

H. Javid av. 33, Baku, 370143 
 

The effects of possible resonance interaction ultrasound wave with electrons in the parabolic quantum well wires have been studied. The 
intersubband transition probability of electrons under the influence of the sound wave have been calculated. 
 

In the ultra-thin semiconducting wires (submicron 
dimensions) usually called quantum well wires, carriers are 
quantized in two transverse directions and move only along 
the  wire and they behave as a quasi-one-dimensional (Q1D) 
electron gas. Size quantization of levels of electrons and 
holes brings about the splitting of conduction band and 
valence band into the subbands separated by energies of the 
dimensional quantization. Due to such splitting a number of 
physical properties of a Q1D electron gas differ from the 
property of its three-dimensional analog [1-7]. Magnetophonon 
resonances [2] and effects of resonant intersubband optical-
phonon scattering [3] in Q1D systems is well developed. 

In this communication we present the effects of possible 
of resonant interaction of ultrasound wave with electrons of a 
quantum wire with parabolic wells. We consider a Q1D 
electron gas confined in a wire of sizes Lx=L, Ly,Lz. The 
lateral restriction in the y direction is modeled by parabolic 
potential of frequency ω and that in the Z direction with a 
triangular well. We will consider electron densities such that 
only the lowest subband with energy 0

zE is occupied in the Z 
direction. The corresponding wave function is denoted by 
Ψ0(z). The electrons are free in the wire direction. 

Electron wavefunction depending on time in quantum 
wire in the presence of the sound field satisfies the 
Schrюdinger equation 
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Where H0 is an unperturbed Hamiltonian of electron in 

the quantum wires, ω is a frequency of the parabolic 
potential, Εd is the deformation potential, I is  sound wave 
intensity, ρ is a crystal density, ωq=qυs, where q, υs are wave 
number and velocity of the sound wave, respectively. 

We assume that, the sound wave can cause the transition 
of an electron between the first subband (n=1) and the second 
subband (n=2). Therefore, in the resonant approximation the 
eigenfunctions Ψ(r,t) of Hamiltonian H0+H1 can be expressed 
as a superposition of wave function for n=1 and n=2 subband 
[8] 
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where electron wave function Ψn and energy eigenvalue En in 
the case of parabolic quantum well wires are well-known [1] 
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Here 
2

1a and 
2

2a are probability of finding electrons in 
n=1 and n=2 subbands, respectively, Нn(y) is a Hermite 

polynomial. Inserting Eq.(3) into Eq.(1), we obtain the 
following equations for 1а  и 2а : 
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where    ,2/lqu 22
y ω= ωω

∗= ml 2 h , −p
nL Laguerra 

polynomial. 
Passing in (5), to new variables α1 and α2 by the formulae. 
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we receive a system of he equations. 
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From (9) it follow [8], that if at t=0, electron was in n=1 

subband, probability of the transition to the n=2 subband 
oscillates with  time by the formula 
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where 22 λξε += . Thus, 
2

2а  is a periodic function of 

time varying from zero up to 22 ελ  with frequency hε . It 
means, that in a strong sound field electron makes the 
transition between the next subband with frequency hε . 
Notice that the at ξ =0 (exact resonance) the transition 
probability 
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varies from zero up to unit with frequency hλ . Such 
character of transitions reflects coherency of interaction of 
electrons with a sound field, which  shows itself under the 
condition that, if the frequency of transitions λ surpasses 
frequency of collisions electrons1/τ, i.е. hλτ >>1.  

For a quantum wire such as GaAs/AlGaAs: Ес=7 eV, 
ρ0=5.37 g/cm3, υs=5.3⋅105 сm/c, qх=106сm-1, at I=1Вт/сm2 
(quite achievable meaning of sound energy flow  [9]) we 
receive  λ=  3⋅10-3 eV . Thus, coherency of interaction of 
electrons with a sound can expose itself at  

τ ≥ 10-12с, that is quite real. 
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Эцжлц сяс дальалары сащясиндя електронларын гоншу алтзоналар арасы кечидин ещтималы щесабланмышдыр. 
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Показанa возможность резонансного взаимодействия ультразвука с электронами квантовой проволоки с параболическими 
ямами. В сильном звуковом поле вычисленa вероятность переходa электронов между соседними подзонами. 
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Optical spectrum and spectrum of scattering of lithium niobate of doped 0.03 % by impurity Fe in requirements of impulse excitation by 
the second harmonic of radiation (532 nm) the laser are observationally investigated YAG:Nd with the continuous illumination from He-Ne 
the laser (632.8 nm). Presumable theoretical interpretation of the obtained experimental outcomes is given. 
 
    1. Introduction 

Lithium niobate remains one of most attractive materials 
with wide spectrum importance technical applications: 
holographic storage systems, optic components and devices 
for telecommunications, conversations and processing 
information, for integrated optics. These applications depend 
on the photorefractive effects, that are related to the 
occurrence of some impurities or structural defects acting as 
donors or acceptors, another words, composition of lithium 
niobate has contain large deflection from stoichiometry in the 
direction of deficit Li, that lead to increase thermo-, 
photorefractive effects. For example, thermal expansions, 
band gap, UV-luminescence, OH--vibrational bands in H-
doped crystals and etc. have been found to depend from 
Li/Nb ratio. In present time, wide propagation received “Li – 
vacancies” and “Nb – vacancies” models, but more 
experimental results show, that “Li – vacancies” model is 
more preferable. 

The photorefractive effect in LiNbO3 can drastically to 
enhance by doping with transition metals (for example Fe and 
Cu being the most widely used ones). While the leading role 
of these dopants in this as well as the dominance of 
photovoltaic currents over diffusion and drift processes has 
been studied intensively, for example in  the publications [1]. 
A detailed description of microscopic mechanisms steering 
the photorefractive effect is still pending. 

The ground limitation for using of lithium niobate crystals 
in holography bound up with lifetime holograms after process 
of thermal fixing. In [2,3] was assumed probable methods 
optimization parameters of process for crystals with concrete 
ionic concentrations and their ratio to receive maximal values 
lifetime for high diffraction efficiencies holograms. 

In generally, model of process can be describing so: 
electrons are exciting with light in the determine regions of 
crystal’s volume can be capture on the deep energies levels, 
so that in process of recording hologram will have been 
fixing the periodic distribution of intensities interference of 
waves. We will be receiving “sinusoidal relief” of the 
occupation the traps, i.e. so name electronic matrix”. 
Following step is process of thermal fixing hologram. It is 
bound up with thermal heating of crystal, ion current is began 
dominant, screening of “electronic matrix” and arise non-
photosensitive “ionic matrix”. Following cooling of crystal to 
initial temperature and illumination with equipartition 
intensity light are leaded the process to equalize electronic 
occupation.  

The problem of gratings dynamics extensively considered 
in [4-5]. However, more questions remain now as before 
unsolved problems.    

The crystal structure of lithium niobate was study in [6-7]. 
It was determined space group symmetry – R3c, hexagonal 

cell contain six formulas of units and parameters of low-level 
cell of crystal: c=13.836±0.0004Å; a = 5.14829±0.00002Å.  

A model of the transition of lithium niobate from 
paraelectric to ferroelectric phase was proposed by [6-8]. In 
the phase transition, the sublattices of positive ions of Li and 
Nb displaced relative to the sublattice of oxygen anions. The 
direction of the displacement of the cations determines the 
direction of the spontaneous polarization vector, in the 
ferroelectric phase [0001]. In [8] authors have pointed out 
that it is position of the metal ions in the structure of the 
ferroelectric phase that gives rise to dipole moment. At 
temperature Curie point, where may occur two opposite 
directions of displacement for metal ions, which correspond 
to 180° electrical domains. It has been suggested that 
between the positive and negative ends of crystal by means of 
etching or from the intensity x-ray reflections. The negative 
end its x-ray reflection is less distinct. In order to change the 
polarization of single-domain crystals it is necessary to allow 
the ions of niobium and lithium to pass through the oxygen 
layers. At high (1423) this distance is larger than the sum of 
radii of the ions Li and O.  

Composition of lithium niobate crystal can be to represent 
in form: (LiNbO3)0.941(NbLiNbO3)0.0118(VLiNbO3)0.0472, where 
first component is usual lithium niobate, second – antisite 
defects and third – cation vacancies. Usually, lithium niobate 
crystals are grown with congruent composition Li/Nb ~0.94. 
Lattice defects stern from non-stoichiometry composition of 
the crystal and caused occupation Li-locations with Nb and 
others atoms. NbLi are most probable electron shallow traps 
and VLi – are probably hole traps. 

One of very importance singularity lithium niobate, which 
determine optical properties of crystal, is fact, that bounds 
(O2--Nb5+) has mainly covalent and (O2--Li+) - ionic 
characters. Radii of ions Nb5+ and Li+ are practically equal. 
All current models of defects as-grown agree that part of the 
Li - sites are filled up by excess Nb5+ ions accommodate Li 
deficiency. In original models [15] each NbLi antisite 
compensated by four Li vacancies, which are potential hole 
traps. 

Defects of type (NbLi - NbNB) with d ~ 3Å are placed in 
direction along C3 – axis. Concentration of defects is 
approximately 2 1020cm-3 and c

VLi
 ~8⋅1020cm-3. Capture one 

of electrons on (NbLi - NbNB) defects (one-electron 

localization) make “small” polaron ( +4
LiNb  - +5

NbNb ) with 
optical band absorption near 1.64 eV. Accordingly, capture 
two electrons on this defect make Gaitler-London’s bipolaron 
with optical band absorption from 1.7 to 4 eV. Authors of 
publication showed, that for description optical spectra’s of 
absorption in the interval energies higher than 2.5 eV also 
need assumption defects of type (NbLi - NbLi), minimal  
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distance is 3.76 Å, concentration of defects is ~6⋅1018cm-3. 

However, computer simulation of bipolaron state ( +4
LiNb -

+4
LiNb ) showed, that this defects do not contribute into 

optical spectrum for energies high 2.3 eV. In other side, four-

electron defect 













+−+

+−+

4
LiNb4

LiNb

4
NbNb4

NbNb
, in which on each ions Nb 

accordance one non-degeneration level and Hamiltonian 
describe through "four nodes Hamiltonian" in four-electron 
basis, well explain and describe singularities optical spectrum 
of lithium niobate crystal for energies high 2.5 eV (model Q-
polaron). [19] 

Follow type of defects bound up with OH-, which in 
LiNbO3 may have two forms: impurity complex and 
molecular ion. The OH- absorption and Raman-scattering 
spectrums of congruent, pure and nearly stoichiometric 
LiNbO3 crystals investigated in publications [16]. Maximum 
by the 3466 cm-1 considered to relate to the stretching 
vibration of OH- for protons directly substituted for Li+ ions 
and located at 3.36Å (O-O) bonds in oxygen triangles nearest 
to the Li –site. Maximums by the 3481cm-1 and 3486 cm-1 are 
also due to OH- in 3.36Å (O-O) bonds, but protons suggested 
occupying −

LiV  near +5
LiNb . Two different ions environment 

around −
LiV  are cause these two absorption maximums. 

Distance (O-H) is near 0.9896Å, concentration cOH- is 
approximately 1016÷1018 cm-3, energy of thermal activation is 
1.23 eV for LiNbO3 and 1.17 eV for LiNbO3: Fe. [20] 

The transport properties in crystal LiNbO3 are of major 
relevance in connection with the hydrogen doping processes, 
ionic conductivity, photorefractive fixing etc. Although 
proposal was first made about possible OH--molecular 
migration to explain proton diffusion, in [17] had found a 
strict proportionality between the proton concentration and 
conductivity up a similar temperature. H+ ions are occupying 
Li-vacancies. 

Role donors and traps of electrons in LiNbO3: Fe is ions 
Fe2+ and Fe3+, respectively, [18] and they are deeper then 

+4
LiNb  and +5

LiNb  with respect to condition band edge.  
Summarizing the XSW measurements, the lattice position 

for an assumed single – site occupancy of Fe atoms in 
LiNbO3 structure is determined to be (0.18±0.07) Å above 
the ferroelectric Li –site in direction of "c" axis of crystal. 
However, due to the systematic differences in coherent 
fractions for ( )600  and ( )411 measurements, spread of 
positions in range up to ±0.7Å is conceivable. 

Thermal reduction of lithium niobate with iron used to 
change the charge state of the impurity and so adjust the 
ration between concentrations Fe2+ and Fe3+ states. Usually 
ratio is ≈++ 32 FeFe

cc 0.05 for case ≈Fec 56·1018cm-3 and 

≈+2Fe
c 2.5·1018cm-3, where ++ += 32 FeFeFe ccc .  
 
    2. Optical spectra and spectra of scattering. 
 

Experimental researches of optical spectra of absorption 
LiNbO3 published in many works. On fig. 1 our experimental 
results are shown only in connection with a context of article. 

We shall notice only, that in spectral area in which our 
researches (is area of a transmission of a crystal) were carried 
out, values of factor of absorption are small.  

On fig. 2 plotted spectral dependence of volume photogalvanic 
current for LiNbO3. 

Curves of two-refraction ∆n changes on diameter of the 
area of a crystal covered by light given on fig. 3.  With 
increase of time of an exposition, the area of changes ∆n 
grows. 

  

 

 
At achievement of some critical size ∆n≈1.7·10-3 on 

dependence ∆n (fig. 4) are observed "jumps" (effect partial 
polarization reversal) which quantity is defined by density of 
capacity (~8 W/cm2).   

 
 
 
 
 
 
 
 

 

Fig.4 "Jumps" ∆n in 
LiNbO3 +Fe.  

Fig. 1 Optical spectra of 
absorption LiNbO3 for 
two polarizations: 1- 
Elight⊥c and 2- Elight||c. 

Fig. 2 Spectral dependence 
of volume photogalvanic 
current for LiNbO3 

Fig.3. Optically induced 
changes of factor refraction 
∆n on diameter of the 
covered area of a crystal.  
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Fig. 6  (See comments in 
the text) 

 
This result earlier published in article [10] and explained in 

authors of paper [14].  
Investigations of spectral dependences of Raman-scattering 

by frequency ω scattering cross-sections, allow studying 
time-development of process. As well known, parameter of 
line width directly connected with time-delay between 
processes absorption and radiation photons. The scattering 
cross-section defines from expression: 
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Mfi and Mi0 are matrix elements and τi=1/γi.  
Therefore, we have two cases: slow |ω1 - ωi |<<γi (depend on 
lifetimes) and fast |ω1 - ωi|>>γi (depend on experimental 
conditions) processes. For slow processes: 
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For fast processes: 
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Here t=0 and t=TL are leading edge and trailing edge of 
impulse, correspondingly. 
 

 Fig. 5 Study lifetime of states in 
LiNbO3 (here x-axis is t, µs): 
Impulse of laser: 
a. λ=532 nm, 100 ns  

 
 
 
b. Case ω1 = ωi  

 
 

 
 
 
c. Case ω1= ω0 + 1.2 GHz 
 
 
 
 
 
d. Case ω1 = ω0 + 2.2 GHz 

 

The received results show, that at a resonance with a line of 
absorption (case "b") intensity of radiated light slowly grows 
(an interval 0≤t≤ TL) and then (in an interval t>TL) slowly 
decreases with time of attenuation about ~14 µs.  

In cases "с" and "d" in intensity of radiated light "slow" 
and "fast" components, and amplitude slow components are 
well observed is less, than in a case "b". 

Time-delay between processes of absorption and radiation 
of photons are approximately ten nanoseconds.  

These investigations will well be coordinated with 
relaxation changes of factor of the absorption, in this case 
reflecting recombination processes (see fig. 6). The received 
experimental results easily can be approximated function 
α(t)=α1(0)exp(t/τ1)+α2(0)exp(t/τ2)+α3(0)exp(t/τ3) with parameters 
α1(0)=4.13, τ1=0.016 ms; α2(0)=0.972, τ2=0.95 ms; 
α3(0)=2.19 and τ3 =0.144ms (see fig. 6a). They also can be 
approximated with function α(t)=α1(0)exp(t/τ1)+α2(0)exp(t/τ2) 
with parameters α1(0)=2.536, τ1=0.3 ms, α2(0)=4.848 and 
τ2=0.016 ms (see fig. 6b). Points give experimental data. 

 
 

On fig. 6 results of adjustment in experimental dependence 
relaxation processes which estimate on change of factor of 
absorption, which will be coordinated to results of work [11] 
is given. Want to remind, that in [11] was defined light-
induced absorption changes vs time. In same work it is 
possible to find the data on dependence of maximum αli

max of 
light-induce absorption, lifetime τ, stretching factor β  
changes from intensity of pump light (see also [12]), and, for 
excellent description of the complete evolution of  αli(t) is 
obtained by function αli(t)=α1(t=0)exp[(t/τ)β]. Here 
fKWW(t)=exp[[(t/τKWW)β] is "stretched" exponential function, 
known as the Kohlrausch-Williams-Watts relaxation function 
[13]. This function applicable only for times long compared 
molecular vibration periods. Laplace transform resolves 
fKWW(t) into a linear superposition of simple exponentials 

(A(τ)≥0): ∫
∞

−= 







0
d

t
exp)(AKWWf τ

τ
τβ . Each dynamical 

region has a simple exponential relaxation (approximately) 
with its own characteristic time scale for relaxation. 
Boundaries and contents of dynamically distinct regions 
change with passage of time. As known, that value of β 

a

b
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usually decreases from "≈1" to "≈1/3". Use by authors [11] 
these functions is connected with made by them the 
assumption, that during absorption and recombination of 
electrons in LiNbO3:Fe properties small polaron are badly 
taken into account and dependence of optical absorption 
should not have simple monoexponential form. The 
investigation of the dynamics of the light-induced absorption 
changes in LiNbO3 crystals reveals: the recombination of 
electrons from small polarons ( +4

LiNb  ) with deep traps (e.g., 
+3Fe  ) follows a stretched-exponential behavior (this result 

from the fact that lifetime of an individual polaron depends 
on the distance to the next deep trap) and, thus, for all 
polarons together, a spectrum of lifetimes instead of a single 
time constant is obtained [11]. 

 Excitation and recombination of the electrons for 
LiNbO3:Fe can be described by the two-center charge model, 
which introduced in [15, 18]. Electrons can be excited from 
Fe2+ by light either into the conduction band or into +5

LiNb  

forming +4
LiNb . Direct excitation into NbLi centers requires 

that there are always some these centers close to each Fe2+.   
In this case, because NbLi is an intrinsic defect that occurs in 
a very high concentration [16, 17]. The electrons in the 

+4
LiNb  traps can be excited to the conduction band by light or 

thermally. The conduction-band electrons can be recombine 
either with Fe3+ or +5

LiNb .   
Completely in this model, excitation and recombination of 

the electrons describe by the equations: 
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Here: s
q

cbFe2 →+
, s

q 4
Li

2 NbFe ++→ - absorption cross-section of 

Fe2+ for absorption and excitation of an electron from Fe2+ 
into conduction band (cb) and +4

LiNb , correspondingly; 
s

q
cbNb4

Li →
+ - absorption cross-section of +4

LiNb  for absorption 

and excitation  of an electron from +4
LiNb  into conduction 

zone; 
Fe

c ,
LiNbc – are total concentration of Fe and NbLi, 

correspondingly; +2Fe
c and +4

LiNbc - concentration of Fe2+ and 

+4
LiNb , correspondingly. IL – intensity of the spatially 

homogeneous light; +→
γ 2Fecb

 - coefficient of recombination 

of conduction band electrons with Fe2+; +→
γ 5

LiNbcb - 

coefficient of recombination of conduction band electrons 

with +5
LiNb ; ++→γ 34

Li FeNb - coefficient of recombination of 

electrons from +4
LiNb with Fe3+.; n – density of free electrons 

in the conduction band; cbNb4
Li →
+β -rate of thermal excitation 

of electrons from +4
LiNb  into the conduction band. It is 

impossible to forget, that in real crystals LiNbO3:Fe as it was 
specified above, always there is a concentration of ions Fe3+ 
and  +5

LiNb . In table 1 the experimental values published in 
paper [15] which are used quality of initial calculations given 
for carrying out have been reduced.  

Table 1 
Quality, unit Value Notes 

1.0 x 10-5 Light wavelength 532 nm  s
q

cbFe2 →+
, m2/J 0 Light wavelength 632.8 nm 

5.0 x 10-5 Light wavelength 532 nm s
q cbNb4

Li →
+ , m2/J 5.2x10-5 Light wavelength 632.8 nm 

s
q 4

Li
2 NbFe ++→ , 

m5/J 

3.22 x 10-30 Light wavelength 532 nm, 
632.8 nm 

Fec , m-3 1.2 x 1025  
or  5.6 x 1025 ++ += 32 FeFeFe ccc  

LiNbc , m-3 1.0 x 1026  

+2Fe
c , m-3 Variable; initial 

data   
2.5 x 1024 for 

Fe
c =5.6x1025 

 
published in paper 

[1] 

+2Fe
c / +3Fe

c  Variable; 
 initial data  ≈0.05 

for 

Fe
c =5.6x1025 

Typically ratios in the range  
from 0.01 to 1 

+4
LiNb

c , m-3       variable  

IL, W/m2 Variable 
 

IYAG:Nd ; IHe-Ne  
to 3 x 104 (IYAG:Nd) 

+→
γ 2Fecb

,m3/s 1.65 x 10-14  

+→
γ 5

LiNbcb  m3/s 0  

++→γ 34
Li FeNb  

m3/s 

1.14 x 10-21  

++→γ 34
Li FeNb  

m3/s 

1.14 x 10-21  

n, m-3 variable  

cbNb4
Li →
+β , s-1 0  

µ, m2/Vs  ≈7.4 10-5 Very small value of 
mobility of electrons 
specifies that fact, that 
electrons in this case cannot 
be considered as the free 
particles.  

r13, m/V 10.9 x 10-12 Electrooptic coefficient, 
Light wavelength 632.8 nm 

ε 28 Dielectric coefficient 
n0 2.286 Refractive index. Light 

wavelength 632.8 nm 
 
First of all we shall remark, that in this case experiments 

were carried out in geometry when impulse radiation from 
YAG:Nd with a wave length 532 nm and intensity IYAG:Nd was 
guided under an angle 20° to a surface of a crystal while 
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radiation from He-Ne the laser with a wave length 638,8 nm 
and intensity IHe-Ne has been oriented perpendicularly to the 
same surface.  

Such experiment allowed observing of a modification of 
absorption stipulated by absorption of transitions 
Fe2+→ +4

LiNb , +4
LiNb →cb and a recombination of electrons 

from a conduction band on levels +4
LiNb  and Fe2+.  

Measuring optically induced modifications of a refractivity 
in LiNbO3:Fe at use He-Ne of the laser such as ЛГ-31 with 
wave length of radiation 632,8 nm have shown, that 
magnification of exposure time results in propagation of a 
refractivity (in particular, see a fig.3. The more a power 
density the more strongly a steepness of effect. This outcome 
is not new and early described in [10], [14]).      

After light transformations, we can write out the kinetic 
equations for both cases. However, two-center charge model 
basically be not capable to explain the modifications of 
absorption factor observed in experiments (for example, 
[11]). In paper [21] the data on formation of an electric field 
in earlier shined field which magnitude as appeared can 
exceed 105 V⋅cm are published. Such field can reduce in an 
electrical breakdown and should be taken into account at 
interpretation, for example optical, experiments. The 
estimation of a field of a photorefraction on observationally 
observable values of a modification of a two-refraction with 
the equation of electrooptical effect gives 680 V/cm for δ∆n 
= 5 10-5 and T=300K. 

In ferroelectric materials - photoconductors on boundaries 
of uniformly irradiated field the space charge is formed. The 
modification of spontaneous polarization at illumination of 
the crystal, happening as a result of a modification of 
concentration of the free carriers [22], calls occurrence of a 
depolarization electric field. Due to photoconductivity this 
field screens, that is at enough long-lived illumination the 
field in the field of a light stain is close to null. Magnitude ∆n 
in the field of a light stain, in this case, is determined by the 
formula [23]. After removal of illumination there can be 
rather fast relaxation of excited states of impurities therefore, 
magnitude of spontaneous polarization is returned to an 
equilibrium value. Thus there is a modification and 
magnitudes ∆n which, however, does not tend to zero. The 
space charge on boundaries of irradiated area can be 
maintained long enough and after a relaxation of spontaneous 
polarization. Therefore, after lockout of light, in earlier 
irradiated field there is a built-in field which defines a 
quantity ∆n, maintained long enough. This magnitude 
essentially depends on the shape of a stain. The modification 
∆n is easy for finding from the equation of electro-optical 
effect: 
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where m - the linear electrooptical coefficient, Ps - 
spontaneous polarization, N – concentration of impurities, α - 
polarizability, f–Lorenz’s factor, M – electrooptical 
coefficient, g – coefficient of deformation potential. 

Presence of two relaxation times ∆n, the reference for the 
given mechanism photorefractive effect, is well-known from 
operations [21, 24-26,]. In the beginning of illumination for 
small time, restricted only the velocity of a photo-ionization 
of an impurity, mounts magnitude ∆n, defined by expression:  
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Association n from Ф (х) - allocation of light intensity and Т - 
temperatures is determined by the concrete mechanism of 
drive of impurities. If under an operation of light there is a 
recharge of impurities this association is given by formulas: 
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The relaxation time of an excited state is not enough at major 
impurity concentrations. Shelf time of space charge, defined 
a thermal ejection of electrons from traps and the pickup on 
them of the free carriers, is determined by expression: 

 
                  0Wn)kT/Iexp(cNiW

1
s +−≈
−

τ                        (3) 
 
When the photoexcitation of an impurity does not reduce in 

ionization, concentration of the excited centers in stationary 
state can be spotted expression: 
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As a rule, the relaxation time of an excited state is not 

enough. A unique reason of effect of a photorefraction in this 
case is formation of space charge which time of maintenance 
is determined by expression (3). 

Let's estimate a reference length of shielding of a field l 
that is thickness of a stratum of a space charge. Division of 
charges happens due to ionization of impurity centers, the 
subsequent electron drift in an electric field and their capture 
on the free trap. The area in which the electric field is distinct 
from zero less, the energetically more favorable is the 
relevant condition. Therefore in the field of the positive space 
charge there is the complete ionization of deep impurity 
centers, and in the field of the negative - the complete 
recharge of traps. Thus, we have ρ=eN and σ=eNl. Guessing, 
that the light stain has the homogeneous allocation of 
illumination and estimating Р as we shall discover, that on an 
order of magnitude l=∆Ps/eN=α*fd-2≈10-6cm.  
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It is obvious, that allocation ∆n(x) during illumination 
noticeably differs from ∆n(x) after removal of illumination, 
more precisely, after relaxation of excited states of 
impurities. Besides from model follows, that sensitivity 
induction of photorefraction should have spectral maxima. 
For LiNbO3 :Fe such association has been found out in [27]. 

As well known, small polarons and bipolarons absorb 
radiation when a self-trapped carrier is exited from severely 
localized state to another well-localized state at an adjacent 
site. The widths of the absorption spectra of small polarons 
and bipolarons are due to variations of the energy differences 
between these well-localized states caused by atomic 
displacements. That is, phonon broadening provides the 
predominant broadening mechanism for small-polaronic 
absorption spectra. Therefore, small-polaronic absorption 
spectra are generally temperature depend. Small-polaronic 
absorption spectra are generally asymmetric. The absorption 
on the low-energy side of the peak is greater than that on the 
high-energy side of the peak. 

The absorption coefficient per unit density of small polaron 
is given by [28, 29]: 
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where t’ is the intersite electronic transfer energy and the 

electronic effective mass is defined by relation 2
a

'
m2

2
'

t
h

≡ ; 

vibEbE8≡∆ . At low temperature Evib is just the zero-point 

vibrational energy 
2

phωh
, at high enough temperatures for 

the vibrational motion to be treated classically, Evib=kBT.  
Derivations of (4) presume that Eb>>∆>t’, this factor 
reduces the absorption.  This reduction factor occurs because 
the transfer related absorption requires the electronic energies 
of initial and final sites be within t’ of one another while 
motion broadens the local energy levels by larger amount ∆. 
The efficacy of the absorption is reduced when the time 

required for the electronic transfer '
t

h
 is longer than the time 

interval during which the electronic energies remain 

coincident, 
∆

h
. If  Eb>>t’ >∆, 

∆

'
t

 should be replace by unity 

in (4).  
For a small bipolaron, two carriers occupy a common site 

since the depth of electronic well that self-traps the carriers at 
equilibrium is twice as deep as that for a small polaron, -4Eb, 
rather than -2Eb. The electronic energy of the two self-

trapped carriers is then -2(4Eb)+U, where U is the on-site 
Coulomb repulsion energy. A small bipolaron is stable with 
respect to separation into two separated small polarons, if its 
electronic plus deformational energy, -4Eb+U, exceeds that 
of two separated polarons -2Eb. Absorption spectra of small 
bipolaron are similar to those of small polarons. But energies 
of the absorption maximums small bipolarons tend to be even 
higher than those small polarons. 

Very small value of mobility of electrons (µ≈7.4 10-5m2/Vs) in 
LiNbO3 specifies that fact, that electrons in this case cannot 
be considered as the free particles, e.g. polarons are strongly 
located. Conductivity here carries jump character, i.e. the free 
length about the lattice constant can exceed time of a 
recombination essentially 10-8 s. 

All aforesaid allows making improvements for two-center 
models: 
1. to take into account association of cut of an absorption 

on an energy of incident photons and on allocation of 
intensity of light in the field of a light stain; 

2. to take into account singularities of recombination 
processes.  

On fig.7 results of calculations of change of absorption 
after the termination of action of a pulse of light from the 
YAG:Nd laser (532 nm) on the modified model which show 
the good consent with experiment (see. Fig.6) are submitted 
(dashed line is theoretical calculations). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7   
 

 
 
The long-range development of these operations will be 

submitted in the second part of paper. 
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LiNbO3 ОПТИК ХЦСУСИЙЙЯТЛЯРИ. БИРИНЖИ ЩИССЯ 

 
YAG:Nd лазерин (532 nm) HeNe лазериндян (632.8 nm) арасыкясилмяйян шцаландырмайла икинжи шцаланма щармоникасы иля 

импулс ойанмасы шяраитиндя 0.03% Fe ашгары иля ашгарланмыш литиум ниобатын оптик вя йайылма спектрляри експериментал 
арашдырылмышдыр. Алынан експериментал нятижялярин ещтимал едиляжяк нязяри интерпретасийасы верилмишдир. 

 
Талат Р. Мехтиев 

 
ОПТИЧЕСКИЕ СВОЙСТВА LiNbO3. ЧАСТЬ ПЕРВАЯ 

 
Экспериментально исследованы оптические спектр и спектр рассеяния ниобата лития легированного 0.03% примесью Fe в 

условиях импульсного возбуждения второй гармоникой излучения (532 nm) лазера YAG:Nd с непрерывной подсветкой от He-Ne 
лазера (632.8 nm). Дана предположительная теоретическая интерпретация полученных экспериментальных результатов. 
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ANTIFERROMAGNETIC SUPERLATTICE 
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General dispersion equation of exchange spin waves propagating in a general direction in an  antiferromagnetic superlattice is derived by 
the recurrence relations technique. The elementary unit cell of the superlattice under consideration consists of N different antiferromagnetic 
layers. The results are  illustrated numerically for a particular choice of parameters 
 

Rapid development of modern technologies leads to 
superlattices (SLs) wide application, and this causes an  
increased interest to their experimental [1-3] and theoretical 
investigation [4-6].  The study of spin waves is very useful in 
determining the fundamental parameters which characterize 
the magnetic systems — anisotropy, exchange coupling, 
magnetization, surface effects, impurities, dipolar interactions, 
and magnetic structure. [7].  Therefore  theoretical studies of  
spin-wave  excitations in magnetic multilayers, thin films, 
metamagnets and SLs have been the focus of considerable 
interest for many years, and  Green’s function method, 
interface rescaling technique, transfer matrix formalism or 
recurrence relations technique are used for their studies [8-
12]. There have been numerous investigations of the spin 
waves propagating in the SLs composed of two different 
ferromagnetic or antiferromagnetic materials [13-15]. 
Comparatively fewer properties of antiferromagnetic SLs 
have been studied. Existing works on antiferromagnetic 
multilayers have primarily considered long- wavelength 
approximations [9,16] or microscopic periodic SL [17,18]. 
Some general expressions for excitations in discrete N – 
layered ferromagnetic SLs are derived in ref. [19]. 

In this paper the general dispersion equation of exchange 
spin waves (short- wavelength limit, where the exchange 
coupling is dominant) for SL with the elementary unit cell 
consisting of  N (=2,3,…) different simple-cubic Heisenberg 
antiferromagnetic materials is derived by the recurrence 
relations technique. Recurrence relations technique leads to 

a compact expression for the spin-wave dispersion relation of 
the SL. The material j (=1,2,…,N) can be characterized by the 
following bulk parameters: the exchange integral  Jj , Lande 
factors g j   and  spin   Sj .  As indicated in  fig.1 the j-th layer 
consists of  nj  atomic layers. The exchange interaction 
between atoms of two atomic layers at each interface is 
assumed to be antiferromagnetic, but different from the 
corresponding bulk couplings. We assume the same lattice 
parameter  α  for all the N materials. 

 

 
Fig.1. The elementary unit cell of SL consisting N different  
           simple-cubic Heisenberg antiferrromagnetic materials.  
            The same lattice parameter a  is assumed for all the  
            materials. The antiferromagnetic layers consist of nj   
            (j=1,2,…,N) atomic layers. The layers are infinite in the  
            direction perpendicular to the axes z. 
 

     The Hamiltonian of the system can be written in the form 
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where the   first term describes exchange  interactions  inside 
atomic layer, the second term describes exchange interactions 
between neighbouring atomic layers and the last two terms 
include the Zeeman’s energy  and magnetic anisotropy 
energy.  Here, n is the index of atomic layer, ν describes the 
position of a lattice site in this layer  and  ||δ  is the vector of  
location of the  nearest neighbours in the plane. The axis z of 

the coordinate system is normal to the film interfaces [001] 
and external field  H0   is assumed to be parallel to the z axis. 
     Using the equation   of motion for the spin operators 

)k,(S ||a,n ω+   and  )k,(S ||b,n ω+  corresponding to sublattices  a 
and b one finds the following system of equations
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where    a

nλ  , b
nλ   and    )k( ||γ    are defined as follows    )akcosak(cos2)k( yx|| +=γ , 
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the upper sign refers to a

nλ  and the lower one to b
nλ ,  

respectively.   Equation (2) are valid in the low-temperature 
limit and random-phase-approximation (RPA)  
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    The system of equations (2) can be solved by recurrence 
relations technique [13] to relate the spins at the first and 
second atomic layer of j-th and (j+1)-th layer of m-th 
elementary unit cell 
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the  matrices )j(R and )1j,j(R +  have the form: 
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 and  E is  twodimensional unit matrix.  

The matrix  
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 can be expressed   through  )j(R   using similarity transformation [21]. 
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Here, )j(
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2θ  are defined by the expression  
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2θ are discussed  in ref. [20,21]. 

  The 4x4 matrices  )j(T  are given by the following 
expressions 
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The matrices  )j(T  (j=1,2…N)  combine  to yield   transfer 
matrix )1()1N()N( TTTT ⋅⋅⋅= − . The matrix elements of  

)N(T    are obtained from the elements of  )j(T   when   
Nj →  and    11j →+ .  The matrices  T(j)   (j=1,2…N)  and 

T fulfill  the following conditions 
 

2
1j

2
j

)j( JJ)Tdet( += ,   detT=1 , Tr(T)=Tr(T-1) ,          
                                                                                              (7)  

where Tr(T)  and  Tr(T -1)  are the sum of diagonal  elements 
of  T  and its  inverse  matrix,    respectively. 
   The eigenvalue problem for the matrix T has the form 

±±± = 2;12;12;1T ΨηΨ ,  and the  characteristic equation has the  
following form               
 
           01)T(Trt)T(Tr 234 =+−+− ηηηη ,         (8)  
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where 
  

433444334224442241144411322333223113331121122211 TTTTTTTTTTTTTTTTTTTTTTTTt −+−+−+−+−+−= , 
 

)iLQexp( 2;12;1 ±=±η     are four eigenvalues and  ±
2;1Ψ   are  

the corresponding eigenvectors. 

Here, ∑=
=

N

1
nL

σ
σ ,  La   is the  periodic distance for  the  

superlattice under consideration. 
      In general case three different situations are possible: 
(i) Either the eigenvalues ±

1η   or ±
2η    is complex ,   

(ii) Both the eigenvalues  ±
1η  and ±

2η      are  complex 
, 

(iii) Both the eigenvalues  ±
1η  and ±

2η       are real. 
 In every case   the following relations are fulfilled 
                       
               )T(Tr2211 =+++ −+−+ ηηηη ,  
                                                                                .         (9) 
             ( )2;12;12;1 LQcos2=+ −+ ηη   
 

Using (8) and (9) one obtains the general dispersion 
equation for exchange spin waves in the superlattices 
under  consideration 
                           

2t
2

)T(Tr
2

)T(Tr)LQcos(2
2

2;1 +−





±=  

.                                                                                       (10) 
 

Equation (10) is the main result of this paper.  It can be 
verified from equation (10) that when all media are 
identical,  
                   jjjN JJJJJ ≡==⋅⋅⋅== +1,21 ; 
   

                   jN gggg ≡=⋅⋅⋅== 21  ; 
 

                〉〈≡〉〈=⋅⋅⋅=〉〈=〉〈 z
j

z
N

zz SSSS 21 ;  
 

                 )()()(
2

)(
1

A
j

A
N

AA HHHH ≡=⋅⋅⋅==  , 

2;1Q    reduces to  )j)
2;1θ . 

 

We note that bulk and surface spin waves in finite or 
semi-infinite system are described by the eigenvalues of 
the transfer matrix [19]. But in the case of 
antiferromagnetic structure surface spin waves can not    
be  characterized by a single  propagation constant [20,21].  
Equation (10)  shows  that bulk, acoustic and optic spin 
waves in an antiferromagnetic SL  are  characterized by 
two propagation variables 1Q  and 2Q  as an 

antiferromagnetic constituent are  characterized  by )j(
1θ  

and )j(
2θ . The number of these propagation variables does 

not depend on the number N of materials consisting of the 

elementary unit cell of SL and the number of atomic layer 

jn  of the material j  )N...2,1j( = .   

 
Fig.2.Bulk spin–wave dispersion graphs for [001]  
          propagation with parameters 2JJ 12 =  ; 21 gg = ;      

               01.0SJBg z
11

)A(
1H1 =〉〈µ ;          

                30.0SJHg z
11

)A(
2B2 =〉〈µ ; 

                a)  bulk spin – wave dispersion curves for constituents  
                     1  (lower curve ) and  2 (upper curve);   
                 b) bulk spin – wave dispersion   curve for  SL  when   
                      N=2; 6nn 21 ==  ; 5.0JJ 1= . 
 

Although the expression of )LQcos( 2;1  is in a 
complex form  one may find  the energy  range where   
they are real and  1)LQcos(1 2;1 ≤≤− . The bulk solution 
corresponds to the complex eigenvalues of the matrix T in 
the energy range where 12;1 =±η .   We write these 

eigenvalues in the form )LaiKexp( z± , where zK  is the 
normal component of wavevector   describing wave 
propagation in SL. For simple numerical illustration we 
choose the case of SL composed of two materials and kx =ky =0. 
Fig.2,a shows the bulk spin-wave  dispersion curves of 
component media 1 and 2 for a particular choice of 
parameters, while fig.2,b shows the bulk spin-wave 
dispersion curve of  SL. The dispersion curves are drawn 
in the energy range ( ) 8SJHg0 z

110B1 <〉〈−< µω . In 

the energy range  ( ) 6SJHg0 z
110B1 <〉〈−< µω  both 

components media 1 and 2 have bulk spin-waves. In this 
energy range the dispersion curve for SL exhibits broad 
pass and narrow stop bands.  SL spin–wave dispersion 
curves and the dispersion curves of the component media 1 
and 2 move up with increasing anisotropy field. 
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АНТИФЕРРОМАГНИТ ИФРАТ ГЯФЯСДЯ РЕКУРРЕНТ ЯЛАГЯЛЯР МЕТОДУ 

 
Рекуррент ялагяляр методу иля антиферромагнит ифрат гяфясин оху бойунжа йайылан спин дальалары цчцн цмуми дисперсийа тянлийи 

тапылыб. Бахылан ифрат гяфясин елементар юзяйи N сайда мцхтялиф антиферромагнит лайдан тяшкил олунуб. Алынан нятижяляр параметрин 
сечилмиш гиймятляри цчцн кямиййятжя тясвир олунуб. 
 

В.А. Танрывердиев, В.С. Тагиев, С.М. Сеид-Рзаева 
 

ТЕХНИКА РЕКУРРЕНТНЫХ СООТНОШЕНИЙ В АНТИФЕРРОМАГНИТНОЙ СВЕРХРЕШЕТКЕ 
 

Используя технику рекуррентных соотношений, получены общие дисперсионные уравнения для обменных спиновых волн, 
распространяющихся вдоль оси антиферромагнитной сверхрешетки. Элементарная ячейка рассматриваемой сверхрешетки состоит 
из N различных антиферромагнитных слоев. Приведены численные результаты для выбранных значений параметров. 
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CLASSICAL  FACTORIZATION  METHOD  FOR  THE  NON-STATIONARY  SYSTEM 
 

R.G. AGAYEVA 
Institute of  Physics of the National Academy of  Sciences of Azerbaijan 

370143,  Baku, H.Javid ave.33. 
 

The classical factorization method is constructed for the non-stationary system with the use of  quantum integrals of motion. 
 
The classical factorization method (CFM) developed by 

Schrödinger [l] and extended by Infeld and his collaborators 
[2] allows the eigenfunctions (EF) and eigenvalues (EV) to 
be constructed for the stationary problems. 

Within the framework of CFM the Hamiltonian for the 
harmonic oscillator is known to be represented as 







 +−+

2
1ââωh , where ω is a frequency, 

+â , −â    are 

the Bose rising and lowering operators, respectively.  Then 
the EVs and the EFs of the Hamiltonian are defined by the 
algebraic way provided the energy EV have a lower limit. 

To solve the non-stationary problem means to determine 
the wavefunctlon ψ. satisfying the wave equation  

ψ
ψ

Ĥ
t

i =
∂

∂
h , where Ĥ   is the Hamiltonian of the problem 

under consideration. However, the wave function of the non-
stationary problem is not EF of Ĥ  and, there fore, it is 
impossible for the CFM to be extended to the non-stationary 
case directly. 

The wave function of the non-stationary system might be 
determined if this wave function obeys not only the wave 
equation but simultaneously is the EF of a certain operator  
 
          

2
1ÂÂK̂ +−+=                                      (1) 

where 
±Â  are the Bose rising and lowering operators for the 

given non-stationary system and the EV of K̂  have the 
lower limit. Such a situation is realized provided  
 

         0Ĥ
t

i,K̂ =



 −

∂
∂

h                                    (2) 

 
i.e. only on condition that K̂  is the quantum integral of 
motion.   

The aim of the present work is to show, with a harmonic 
oscillator with a time-dependent frequency being used as an 
example, that the CFM may be developed for the non-
stationary system provided the method of the quantum 
motion integrals is used. 

There is a further point to be made, in the case of the 
non-stationary problem one can solve the EV problem for the 
operator K̂  instead of the corresponding wave equation. In 
the stationary case this operator transform to the energy 
operator. 

Let us consider a non-stationary harmonic oscillator 
described by the Hamiltonian 

 

                    

            
2

x̂)t(m
m2

p̂Ĥ
222 ω

+=                             (3) 

 
where x is a usual canonical coordinate, p is its conjugate 
momentum, and m is a mass. 

It is known that lowering and rising operators for such 
system [3] are: 

 

       







−=− x̂mε

m
p̂ε

2
iÂ &
h

, 

                                    (4) 

       







−−=+ x̂mε

m
p̂ε

2
iÂ *

*

&
h

 

 
where the function ε(t) is a definite solution of the classical 
harmonic oscillator equation 
 
                       0ε)t(ε 2 =+ω&& .                            (5) 

 
The following commutation relationship holds  
 
            [ ] 1Â,Â =+−             (6) 
 
It is easy to check that  
 

                           0Â,Ĥ
t

i =



 −

∂
∂ ±h                  (7) 

 
i.e. the operators (4) are invariants. 

Formulae (5) and (6) give the following equality, 
 
           2iεεεε ** =− &&                            (8) 
 

which is valid for any moment of the t .    
Let us introduce an operator K̂ according to (1) where 
±Â are given by the expressions (4). If Ĥ  has the form (3) 

it is easy in compliance with (2) to be convinced that K̂  is 
the motion integral. This means that K̂  commutes with the 

operator 







−
∂

∂
Ĥ

t
ih . Hence, these operators have exactly 

the same set of EFs. Consequently, the wave function of non-
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stationary harmonic oscillator can if be found if the EV 
problem for operator K̂  is solved: 

 

    kψψK̂ =          (9)  
 
Construct the following motion integrals 
 

              ( ) 2/ÂÂX̂ 0
+− +=                        (10) 

 
and 
 
             ( ) 2i/ÂÂP0

+− −=
)

                               (11) 
 

They are referred to as the operator of the initial 
coordinate and the operator of initial impulse, respectively 
[4]. Let us express K̂  from (l) in terms of these operators: 

 
                 ( ) 2/ˆˆˆ 2

0
2
0 PXK +=                                 (12)  

0X̂ and 0P̂ are the Hermitian operators. Then these 
operators have the real EV that places the lower limit of EV 
of the expression (12): 0k ≥  This enables to apply CFM to 
solving the problem (9).             

Denote the quantities belonged to the ground state, i. e. to 

the lowest EV of the operator K̂  , by subscript "0".Then 
 

                  000 ψkψK̂ =                                         (13) 
 
Let us multiply the equation (13) on the left-hand side by 

and make use of the commutation relationship (6) taking into 
account (1). Finally, instead of equation (13) we 
obtain 000

- 1)-(kAK ψψ =
)) .  Since k0 is the lowest EV of the 

operator K̂  it follows that 
 

             0ψÂ 0 =
−                (14) 

 
whence       
 

                   ( )ε2/xεimexpCψ 2
00 h&=               (15)  

 
and 

                    4
20 επ

mC
h

=                                       (16) 

is calculated from the normalization for  0ψ  . By means of 

(14) we get from the expression (13) 2/1k0 = .       
Let us multiply the equality (13) on the left-hand side by 
+Â and make use of the expressions (6) and (1). We obtain    

( ) 000 ψÂ1kψÂK̂ ++ += , whence 011 ψÂCψ += , 

1kk 01 += . Using the mathematical induction method one 

can prove that 1n1n ψÂCψ −
+= ,

2

1
nkn += . The value of 

nС  is given by the normalization conduction. On the whole 
we get the wave function of the non-stationary harmonic 
oscillator in the form 

 

                            ( ) ( ) ψÂn!ψ
n2/1

n
+−=                           (17) 

 
that exactly coincides with the well known result for the 
system under consideration [4]. 

The author  thanks Prof. Gashimzade F.M. for helpful 
discussions. 
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REALIZATION OF THE TOMOGRAPHIC PRINCIPLE IN QUANTUM STATE  
OF DAMPED OSCILLATOR 
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Institute of Physics of the Azerbaijan National Academy of Sciences 
H. Javid av. 33, Baku, 370143 

 
The general principle for the tomographic approach to quantum state reconstruction, which until new has been based on a simple 

rotation transformation in the phase space is considered. The realization of the principle in specific example is presented. 
 

1. Introduction 
 

In 1932 Wigner [1] introduced a real function W(q,p) 
which is related by Fourier transform with complex density 
matrix ρ(x,x’). The Wigner function has the specific properties 
which are similar to properties of a probability distribution 
function of classical statistical mechanics. The motivation to 
introduce such function was to make the description of 
quantum state closer to intuitively more familiar description 
of classical state by means of probability distribution on the 
phase space.  Moyal [2] has formulated evolution equation of 
quantum state in terms of Wigner function. The Moyal 
formulation of quantum mechanics showed very clearly what 
is similarities and differences of the classical and quantum 
fluctuations. 

Nevertheless the Wigner function can not be considered 
as joint probability distribution on phase space. The obvious 
reason for this is the fact that the Wigner function can take 
negative values for quantum states [3-5]. The Wigner 
function is used to study the evolution of quantum systems 
[5-8] since it provides a convenient representation similar to 
classical picture of the evolution.       

Recently, in [9-11] the probability representation of 
quantum mechanics was introduced and the new evolution 
equation was derived, which was a generalization of the 
result obtained in [12], where the role of the Wigner function 
was played by the particles position in an ensemble of rotated 
and scaled reference frames in the system’s classical phase 
space (the classical representation of quantum mechanics 
uses the symplectic tomography procedure suggested for 
measuring quantum states [13,14]. Tomography is well 
known in the field of medicine where it is extensively used 
for image reconstruction in diagnostic systems. It is based on 
the possibility of recording transmission profiles of the 
radiation which has penetrated a living body from various 
directions. In quantum optics, one has the opportunity of 
measuring all possible, so that tomography can be easily 
implemented. In fact Vogel and Risken  [ ] pointed out that 
the marginal distribution is just the Rodon transform (or 
“tomography”) of the Wigner function.  

By inverting the Radon transform, one can obtain the 
Wigner function and then recover the state, this is the basis of 
the method proposed by Smithey et al [15]. 

The aim of this paper is to consider the tomographic 
principle and investigate in a frame of this principle the 
quantum system described by the quadratic non-stationary 
Hamiltonian. 

 

2. Symplectic tomography 
 

In the usual optic homodyne tomography the observed 
quantities are the quadratures ϕϕϕ sinp̂cosq̂x̂ +=  obtained 

as mixtures of position q̂  and momentum p̂  by means of a 
rotation g in phase space 

 

               







=








→








ϕϕ
ϕϕ

cossin-
       sincos

g ,
p
q

g
p
q

       (2.1) 

 
The quadrature histograms w(x,ϕ) also called marginal 

distributions are projections (Rodon transformation) of 
Wigner function [1] 

 
    ∫ += )dppcosqsin ,psin-W(qcos)w(x, ϕϕϕϕϕ  

                                                                                           (2.2) 
 
On the other hand the resulting marginal distribution 

w(x,ϕ) is [13] 
 

>>=<=< q(g)GˆG(g)qxˆx)w(x, -1ρϕρϕ ϕ  

 
where xϕ> are eigenkets of quadrature operators and G(g) is 
the unitary group representation for the transformation g. In 
this case  
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As was shown in [12] for the generic linear combination 

of the position q and momentum p, which a measurable 
observable in the phase space 

 
                     δνµ ++= p̂q̂x̂                                 (2.5) 
 

where µ, ν, δ are real parameters, the marginal distribution 
ω(x,µ,ν) is related to the state of the quantum system 
expressed in terms of its Wigner function W(q,p) as follows: 

 

∫= 2)(2
dkdqdpp)p)W(q,-q-exp[-ik(x),x,(
π

νµνµω  

                                                                                           (2.6) 
 

where x=X-δ. By means of the Fourier transform of the 
function ω, one can then obtain the relation 
 
                     zp)- zq,- (z,~z)(2p)W(q, 22 ωπ=          (2.7) 
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where –zq, -zp and z are the conjugate variables to µ, ν  and x 
respectively and the Fourier transform ω~  has the property 

 

         p)- q,- 1,(
z
1zp)- zq,- z, 2 ωω =                 (2.8) 

 
It is worth remarking that in this case the connection 

between the Wigner function and the marginal distribution is 
simply guaranteed by means of the Fourier transform instead 
of the Rodon transform. 

The procedure developed is called “symplectic 
tomography” [13], since in this case the marginal distribution 
is obtained by using a symplectic transformation g belonging 
to the symplectic group ISp(2,R) 
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For this transformation, one has  
 

      0 ,sin     ,cos -1 === δϕλνϕλµ                (2.10) 
 
This, for the realization of the scheme, the element g is 

the product of squeezing and rotation operators. This means 
that for our scheme the representation operator is 

 

( )



 +
















+= q̂ p̂ p̂ q̂

2
iexp

2
q

2
p̂iexpG(g)

22 λ
ϕ (2.11) 

 
3. Marginal distribution for quantum dumped oscillator. 
 
Let us consider a quantum system described by Hermitian 

non-stationary Hamiltonian [16] 
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2
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The wave functions for the Fock states of this system ψn 

have the form 
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where the Hn(x) are Hermite polynomials and ε(t) is a 
complex function satisfying the equation 

 
               0t)((t)2 2

0 =++ εωεΓε &&&&                         (3.3) 
 

and the additional relation 
 

                      i2*-*(e (t)2 =εεεεΓ &                            (3.4) 
 

 
and  

∫−= ττεδ Γ f(t)d)e(i(t) (t)2  

 
The corresponding Wigner function is as follows: 
 

                        Ln(4z(t)e2(-1)q)(p,W -2z(t)n
n =  (3.5)
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The marginal distribution (2.6) as it was shown above is 

expressed in terms of its Wigner function. Then the marginal 
distribution ) , x,(т νµω  for the Fock states of our system is 
as follows
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Substituting (3.5) in (3.6) and taking for simplicity f(t)=0 we obtained the exact expression for marginal distribution in the 

following form:  
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where 

                    [ ] µεεεενΓ
εε

++⋅= *)*((t)exp
*

1a &   , 

                    *b εε
ν=  . 

 

In the following paper we will obtain the smoothed 
Wigner function of our system and its smoothed marginal 
distribution and compare both expressions. 

I am very grateful to professor V.I. Man’ko for numerous 
discussions and suggestions.
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ELASTIC AND INELASTIC SCATTERING OF PROTONS 

ON ATOMIC NUCLEI 
 

M. M. MIRABUTALYBOV,  S.G. ABDINOVA 
Azerbaijan State Oil Academy, Physics Department. 

 
In the frameworks of distorted wave HEA, on the base of three-dimensional formulation the expression for scattering amplitude of 

protons of high energies on atomic nuclei was obtained in the analytical form. As a consequence of short range character of a proton-nucleon 
interaction, the scattering of protons on nuclei was presented as a sequence of unitary scattering. With a help of the developed mathematical 
method the recurrent formula was received what allowed to express the form-factor in the distorted wave in Born,s ones and its derivatives 
.As a result of the analysis of experimental cross sections of elastic scattering of protons with energy 1 GeV, the parameters of distribution of 
protons and neutrons in spherical nuclei  40 Ca,   48 Ca,     90 Zr,   208 Pb    as well as a width of a surface layer of nucleons, root-mean-square 
radii of protons and neutrons were determined. Fermi-function was used for the distribution of nucleons density. 
                      

 
Development of experimental engineering last decade allowed tocarry out numerous experiments on scattering of protons 

on nuclei in the range of intermediate energies of striking particles. This area of energies is of a particular interest, because 
checking behavior of amplitude of particles scattering on nuclei becomes possible. Different methods for getting obvious 
expressions of the amplitude for electrons scattering on nuclei are listed in [1]. The most successful expression of the 
amplitude was presented in[2]. Further, this theory was developed in [1], where opportunities and good accuracy for 
performance of quantitative studies were shown. Later in [3,4] this method was advanced for elastic and inelastic scattering of 
electrons on spherical nuclei and the good results were received. What concerns proton scattering, it appears possible to 
receive the amplitudes [5] fair in the range of small angles. Recently, in [6] on the base of three-dimensional quasiclassics 
within the limits of high-energy approach (HEA), the amplitude of protons scattering on nuclei was obtained in the range of 
small angles of scattering as well as of large ones. Obviously, this method will find it’s wide application. 

The purpose of the present study is to receive the amplitude of scattering in an analytical form to connect it with the theory 
of multy-scattering and to develop a method of it’s calculation. Let’s write down a differential section of the process in general 
form: 
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Wave functions of relative motion of the striking and scattered nucleons as the solutions of Schredinger equation produce 

the following form: 
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Using property of spherical symmetry of nuclear potential from the static equation we get:  
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The coefficient of expansion of potential is received in form   
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where γ=0,08. 

Here γ corresponds to the irrationalized constant of connection, defined from the experiment on nucleon-nucleon scattering [7].  
It is possible to neglect the change of nucleons location in the nucleus during a flight of a fast proton through it. The 

scattering occurs basically forward on small angles. Scattered nucleon consistently interacts with several nucleons of a nucleus, 
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which are met on it’s way. Therefore, as a consequence of short-range nucleon-nucleon interaction, the scattering of nucleon 
may be written as a sequence of unitary scattering. Taking it into account, nuclear potential may be represented as the sum of 
component interactions of the striking particle with the nucleons of the target nucleus: 

 
                                                                ( ) ( ) ( ) xxxrr dV ξρυξ ∫ −=                                                                              (6)  

 
As the binding energy of a nucleus is small in comparison with the energy of a striking proton, the nucleons binding may 

be neglected and hence, the potential of nucleon-nucleon interaction can be expressed in the amplitudes of scattering on free 
nucleons defined from the solution of Schredinger equation  
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   is a distorted nucleon-nucleon potential,µ 0   - equivalent mass, q ́- momentum 

of the particle striking on a nucleon target. Taking into account Fourier transformation in (6), the nuclear potential is received : 
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. 
Here for nucleon-nucleon amplitude a following parameterization is chosen: 
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After integration the following expression for differential section is received: 
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where the form-factor  is  
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For derivation of this form-factor we obtained the following recurrent  formula: 
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 This recurrent formula allows to express the form factor FL(q,γ ) (11)Born’s form-factor and it’s derivatives. 
 

ELASTIC SCATTERING OF PROTONS ON SPHERICAL NUCLEI. 
 
   Analysis of the cross-sections with a help of multy scattering theory of protons of intermediate energies allows to obtain a 

quiet exact information about nucleon distribution in nuclei. It is known, that   the fast protons have the same sensitivity as 
protons and neutrons of a nucleus. Therefore, the data on scattering of protons on nuclei makes it possible to get the 
information about izoscalar density, i.e. about the sum of neutron and proton densities. 

 
                                                                 ( ) ( ) ( )rrr nρρρ ρ +=                                                                                    (14)  
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Distribution of protons and neutrons densities is chosen as Fermi-function  
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      Experimental data on elastic scattering of protons with energy ~ 1GeV on nuclei  40  Ca, 48Ca, 90 Zr and  208 Pb [6] are 
analyzed within the framework HEA with a use of probe function (14). The best consent with the theoretical cross sections is 
achieved at the certain sets of protons and neutrons as it is shown on fig. 1 and 2. The parameters itself are presented in the 
table. 

                                                      
 
 
 
 
    
 
 
 
 
 
 
  
 
 
 
 
 
Fig.1. Differential sections of elastic scattering of protons with energy 1 GeV on   40 Ca and   48 Ca. Points- experimental 

data, solid lines- cross sections, derived by a method of distorted waves. 
 
 
 
 
 
 
      
    
 
 
 
 
 
 
 
 
 
 
Fig.2. Differential sections of elastic scattering of protons with energy 1 GeV on nuclei  90 Zr and  208 Pb. Points- 

experimental data. Solid lines- cross sections derived by the method of distorted waves. 
 
As  it is seen from the table, the good agreement of the cross sections is received at α = α =α, i.e., thickness of a surface 

layer of protons and  neutrons in the  spherical nuclei are not different. It proves once again that the fast protons on the 
sur`faces of spherical nuclei are not sensitive to a thin structure. As it is known, the fine structure in distributions of protons 
density appears at the account of three-parameter Fermi –functions in elastic scattering of electrons on nuclei. 

                                                                                                                                                                             TABLE. 
                                  Parameters describing distribution of density of protons, neutrons and nucleons. 

    40 Ca    0.60 0.6 2.260 3.920 2.662 3.70 1 
    48 Ca    0.64         0.4 2.480 3.590 2.754 3.18 1.023 
    90  Zr 0.40 0.30 2.306 4.308   4.207  4.22 1.040 
   208   

Pb   
o.60 0.3 1.710 5.482  4.982 5.26 1.048 
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     To satisfy condition (14) we chose distribution of proton and   neutron density in the following general form: 
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Thus the distribution of protons and neutrons density in nuclei accept the following form: 
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where Wp(n)    - parameters, describing the fine structure in distribution of protons and neutrons density, are connected with 
each others. 

All calculations were carried out using the parameters of elementary amplitudes, according to the data on elastic nucleon-
nucleon scattering [10,11]. 

Comparing the derived cross sections with experimental ones it can be seen that on the right slopes of diffractional peaks 
the consent is good, while on the left slopes and in the area of diffractional minimum some excess of the derived values is 
observed. 

On fig.3. the diagrams of distribution of protons and neutrons density are presented. Parameters of these distributions are 
obtained from the combined analysis of experimental cross sections in the distorted wave HEA of proton and electron 
scattering on the appropriate nuclei [9].  

 
 
 
 
 
 
 
             
 
 
 
 
 
 
 
 
 Fig. 3. Distributions of density of protons ( solid lines), neutrons (dotted): 1-  90 Zr, 2-    48 Ca, 3- 208Pb                                                   
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The osmotic coefficients of potassium iodide in methanol have been measured by the 

isopiestic method at 25 °C. Sodium Iodide was used as isopiestic standard for the calculation 

of osmotic coefficients. The molality ranges covered in this study correspond to about 0.1-1 

mol·kg-1. Experimental osmotic coefficient data are reliably represented by the chemical 

model of Barthel et al. in two forms. The parameters from the fit were used to calculate the 

osmotic coefficients.  

Keywords: osmotic coefficient, potassium Iodide, Barthel model, isopiestic, methanol, 

electrolyte solutions.  

 

1. Introduction: 
The systematic investigation of non-aqueous solutions is guided by the progress of our 

knowledge on solute- solute and solute-solvent interactions. By combination with chemical 

models of the solution, valuable results can be obtained which assist the understanding of the 

properties of these solutions. For dilute electrolyte solutions consistent and reliable equations 

are based on the modern conception of electrochemistry which takes into account both long 

and short-range forces between the solute and solvent particles. Solution chemists usually 

think of short-range interactions in terms of ion pair formation.  

In our previous works the Pitzer and Mayorga model were used for the predication of 

activity coefficients and osmotic coefficients of methanol + LiCl, LiBr and +LiCH3COO at 

25°C [1]. In this research osmotic coefficients of KI were determined by an improved 

isopiestic technique at 25°C. The Sodium Iodide solutions were applied as a reference. While 

there is limited information for the osmotic coefficient of KI in methanol in the literature, 

osmotic coefficients from vapor pressure measurements can be found in the literature for 

methanol solutions of KI at 25°C [2]. For the purpose of establishment of correlation between 

osmotic coefficient data and salt molality, the chemical model of Barthel et al [3,4] were used. 

It allows the use of the classical association concept initially introduced by Bjerrm after some 
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refinements concerning the spatial extension and structure of ion pairs and mean force 

potentials. The ions in an ion pair retain their individual ionic characters and are liked only by 

columbic and short-range forces. The distribution of the ions in the solution depends on the 

forces acting between all the particles, ions and solvent molecules. 

2. Experimental: 
2.1. Apprattus and procedure: 

The isopiestic apparatus used in this work is essentially similar to the one used previously 

[5,6]. Recently this technique has been used for the measurement of osmotic coefficient of 

some lithium salts in methanol and ethanol solutions [1,7]. This apparatus consisted of a five-

leg manifold attached to round-bottom flasks. The five flasks were typically used as follows. 

Two flasks contained the standard NaI solutions, two flasks contained the KI solutions, and 

the central flask was used as a methanol reservoir. At the beginning of each experiment, 

several drops of methanol were placed on the central flask to help sweep out the air in the 

vessel during evacuation and to reduce evaporation from the solutions. The apparatus was 

held in constant temperature bath for at least 120 h for equilibration at (25.0±0.01)°C. 

 

2.2. Chemicals: 

The salts and methanol obtained from Merck. They were all suprapure reagents (NaI, GR 

min 99.5%, KI, GR, and min 99%). The salts were used without further purification and were 

dried in an electrical oven at about 120°C for 24 h prior to use. 

 

3. Results and discussion: 

3-1. Experimental results 

Isopiestic equilibrium molalities with reference standard solutions of NaI in methanol as 

reported in Table 1 enabled the calculation of the osmotic coefficient, φ, of the solutions of 

potassium iodide in methanol from 

m
m

ν
φν

=φ
***

          (1) 

where ν* and ν are the sum of stoichiometric numbers of anion and cation, (ν++ν-),  in the 

reference solution and the solution of potassium iodide, respectively, m* is the molality of the 

reference standard in isopiestic equilibrium with these solutions, and φ* is the osmotic 

coefficient of the isopiestic reference standard, calculated at m*. The necessary φ* values at 

any m* were obtained from the fitted Pitzer and Mayorga equation, including the β(2) term, as 
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described by Zafarani-Moattar and Nasirzadeh.[1]  It was shown that,[1] using α(1)=2, 

α(2)=1.4, β(0)=0.40830, β(1)=1.04430, β(2)=-0.875 and Cφ=-0.02224, the osmotic coefficients 

of the isopiestic reference standard solutions, φ*, are reproducible with standard deviation of 

0.005 for NaI in methanol solutions in the range (0.02 to 4.33) mol·kg-1 at 25ºC. From the 

calculated osmotic coefficient data, the activity of methanol in potassium iodide solutions and 

the vapor pressure of methanol over these solutions were determined at isopiestic equilibrium 

molalities, with the help of the following thermodynamic relations: 

s

s

mM
a

ν
−=φ
ln

          (2) 

( )( )
RT

ppVB
p
pa s

s

**

*lnln −−
+








=        (3) 

In these equations, as is the activity of solvent, B, V*
s and p* are second virial coefficient, 

molar volume and vapor pressure of pure methanol, respectively. The values of Ms=0.032042, 

B=-2.075×10-3 m3·mol-1, Vs
*= 4.073×10-5 m3·mol-1 and p*= 16957.7 Pa (taken from ref. [2]) 

were used at 298.15 K. 

A comparison of our vapor pressure data to that of Barthel et al.[4], and Bixon et al.[8] is 

shown in Figure 1 for KI in methanol solutions. Figure 1 shows that our data agree well with 

vapor pressure data of Barthel et al.[4]. However, the data obtained by Bixon et al.[8] are for 

24.9 °C and are somewhat scattered. 

Table 1. Experimental isopiestic molalities and osmotic coefficients for KI in methanol at 25 °C 
 

mNaI  / 
(mol· kg-1) 

 

mKI  / 
(mol· kg-1) 

Φexp ΦPitzer ΦCM1 ΦCM2 

0.0000 0.0000 1.000 1.000 1.000 1.000 
0.1295 0.1322 0.816 0.819 0.815 0.814 
0.1806 0.1841 0.817 0.816 0.812 0.812 
0.2799 0.2884 0.818 0.817 0.811 0.814 
0.3128 0.3240 0.818 0.818 0.814 0.814 
0.3484 0.3630 0.819 0.819 0.811 0.816 
0.3971 0.4174 0.820 0.821 0.818 0.816 
0.4532 0.4813 0.822 0.823 0.820 0.818 
0.4662 0.4964 0.822 0.823 0.821 0.819 
0.5144 0.5527 0.824 0.825 0.824 0.819 
0.5690 0.6179 0.826 0.827  0.822 
0.5915 0.6451 0.827 0.828  0.825 
0.6194 0.6792 0.829 0.829  0.826 
0.6558 0.7243 0.830 0.830  0.829 
0.6896 0.7666 0.832 0.832  0.830 
0.7265 0.8135 0.834 0.834  0.832 
0.7382 0.8284 0.835 0.834  0.833 
0.7658 0.8640 0.836 0.836  0.834 
0.7819 0.8850 0.837 0.837  0.835 
0.8532 0.9790 0.841 0.843  0.839 
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Figure 1. Comparison of vapor pressure for KI in methanol solutions at 25 °C. (Ο) 

present work; (×) Barthel et al.1, (∆) Bixon et al.2 

 

 

3.2. Correlation of data 
Several models are available in the literature for the correlation of osmotic coefficients as a 

function of molalities. The Chemical model of Barthel et al. has been successfully used for 

non-aqueous electrolytes in two forms. In low concentrations, m≤0.15 mol·kg-1 the osmotic 

coefficients were fitted to the chemical model using 
 

 

In connection with the association constants KA
(m) in the molal scale  
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In equation(4) and (5),1-α is the fraction of oppositely charged ions acting as ion pairs,γ° and 

γ± are the activity coefficients (molal scale) of ion pairs and free ions. The activity 

coefficientsγ±’ and γ° are given by the relationships (dilute solutions): 

 

 

In this equations, R is the distance parameter of the chemical model up to which oppositely 

charged ions are counted as ion-pairs, ρ and ρ° are densities of solution and pure solvent in 

kg·m-3, e is the elementary charge, ε is the relative permitivity of the solvent, NA is the 

avogadro’s number, k is the Boltzman constant, T is the temperature in K, C is the electrolyte 

concentration in mol·dm-3, and ME is the molecular weight of the salt in kg·mol-1.The 

necessary densities for KI in methanol solution that taken from Barthel et al.[2] and used for 

correlation of chemical model.  

The association constant of the CM on the molality scale is given by 

 

 

In equation (7), ∆GA
∗ is the non-columbic part of the Gibbs energy of ion pair formation. 

The use of activity coefficients, both for free ions and ion pairs in the calculation of the 

association constant, is an extension of the original(low concentration) chemical model(CM1) 

where the ion pairs in the solution are considered with ideal behavior, lnγ°=0, in contrast to 

CM2, where lnγ°≠0. The extended model CM2 allows the application of the chemical model 

to a significantly wider concentration range. The linear form of lnγ° is theoretically well 

understood. Here we use the coefficient B° as an adjustable parameter of the chemical model. 
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The CM2 model increases the concentration limit of the CM1 model, which is about 0.15 to 

approximately 0.6 mol·kg-1[9]. Figure 2 shows the experimental and theoretical osmotic 

coefficients for KI in methanol solutions. 

 

Figure 2: experimental and theoretical osmotic coefficients for KI in methanol solutions. 
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The association constants (Barthel model parameters) of KI in methanol solution are reported 

in table 2. 

 
Table 2: Association constants of KI in methanol solutions at 25°C. 

 

 
 

 

 

4. Conclusions 
Experimental data show that the osmotic and activity coefficients of KI/methanol and 

NaI/methanol solutions decrease rapidly at increasing salt concentration. These effects have 

several reasons: small ion sizes yielding small volume effects, high association constant or 

Salt anm   KA
m    Β0 

KI 0.35 10.55 3.19 
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weak ion solvation. The advantage of the CM calculation is the use only two parameters 

which, furthermore, can be understood from chemical evidence and this parameters have the 

physically significant.  
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