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In this work we review of the theoretical and experimental issue related to the Rashba spin-orbit interaction [1] in 
semiconductor nanostructures. The Rashba spin-orbit interaction has been a promising candidate for controlling the spin of 
electrons in the field of semiconductor spintronics. In this work I focus study of the electrons spin and holes in isolated 
semiconductor quantum dots and rings in the presence of magnetic fields. Spin-dependent thermodynamic properties with 
strong spin-orbit coupling inside their band structure in systems are investigated in this work. Additionally, specific heat and 
magnetization in two- dimensional, one-dimensional ring and quantum dot nanostructures with spin- orbit interaction are 
discussed. 
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INTRODUCTION 

The use of electron spin in electronic devices has 

been of great interest to scientists during the last three 

decades. The spin-orbit interaction is also called spin-
orbit coupling or spin-orbit effect. It means that any 

interaction of a particle’s spin with its motion. Spin 

degree of freedom is made by spin-orbit coupling 

which is respond to its orbital environment. Moving of 

the electron in an external electrical field leads to 

creating spin-orbit interaction and experiences an 

effective magnetic field in its own reference frame, 

that in turn couples to its spin through the Zeeman 

effect [2]. The magnitude of the spin-orbit interaction 

increases with the atomic number which is a 

relativistic effect. The spin-orbit interaction is found 
with asymmetry in the underlying structure in crystals 

in semiconductors systems [3]. In bulk it seems in 

crystals without an inversion center (e.g. zinc blende 

structures) and is called the Dresselhaus spin-orbit 

interaction [4].However, Rashba term is aroused from 

the structural asymmetry of the confining potential in 

heterostructures [5]. A set of practical information on 

the cyclotron resonance and also the combined 

resonance of two-dimensional electron gas at the 

GaAs-AlxGa1−xAs heterojunctions’ interface [6,7], 

shown that the spin degeneracy was lifted in the 

inversion layer. For describing this experimental 
information in term of spin-orbit interaction is 

developed by the theory [1,5]. In semiconductor 

nanostructures, studies of transport phenomena and 

spin-dependent confinement have been progressing 

importantly since spintronics became a focus of recent 

interest. The first offer of Das and Datta assign that 

the basic elements of spintronic devices [8]. Several 

possible structures with the basic elements were 

analyzed. Different kinds of electron spin detection 

methods have been investigated. Lately the coherent 

spin transport has been showed in heterostructures and 
homogeneous semiconductors [9]. The most necessary 

property of III–V semiconductors to be used in all 

semiconductor spintronic devices is the spin–orbit 

interaction [4,5]. In III–V and II–VI semiconductors 

the spin–orbit interaction has been used successfully 

to interpret experimental results in different quantum 

wire and well structures. Additionally, it lifts the 
conduction state spin-degeneracy [5,11]. Exploiting 

the spin-orbit interaction in the conventional III–V 

nonmagnetic semiconductors to design basic and high-

speed spintronic devices is reviewed in paper [12]. To 

achieve this [12], concentrate on spin-dependent 

electronic characteristics of semiconductor 

nanostructures. 

RASHBA EFFECT IN TWO-DIMENSIONAL 

ELECTRON SYSTEM  

Spin-orbit interaction has a vital role in spin 

relaxation, optical phenomena and transport, which 

are actively studied for entirely new applications in 

semiconductor spintronics. Study of the effects of 

spin-orbit interaction in two-dimensional electronic 

systems exposed to a perpendicular magnetic field and 

were initially associated with Landau volume levels: 

the spin-orbit interaction renormalization of energy 

dispersions, the interplay among various spin-orbit 

interaction mechanisms, effects of magnetic transport 

and electron-electron interaction. In general, the 

Hamiltonian described the spin-orbit interaction 

   pU   Hso , in here p is the momentum 

operator,   is the spin-orbit  coupling parameter and

having a dimension of length squared , which is 

proportional to the interface electric field and is 

sample dependent,   is the Pauli matrices vector.

The value of   determines the contribution of the

Rashba spin -orbit coupling to the total electron 

Hamiltonian. When an external electric field is 

present, the relativistic correction introduces a relation 

between the electron spin and its own momentum. The 

coupling of the electron spin and its orbital motion 

lifted the spin degeneracy of the two dimensional 
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electron gas energy bands at 0k  in the absence of

a magnetic field. This coupling arises due to inversion 
asymmetry of the potential which confines the two 

dimensional electron gas system. This is described by 

Hamiltonian which is given many books and papers 

by: 
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Where the z axis is selected perpendicular to the two 

dimensional electron gas system lying in the x-y 

plane.  

In the presence of the Rashba spin-orbit term the 

Hamiltonian of the two-dimensional electron gas 

systems in the plane (x,y) is given : 
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The eigenvalues of this Hamiltonian is 

    sosox kk
k

m
k

m
kE  

2

222

22



 (3) 

Here 
22

yx kkk    is the electron momentum 

modulus, 
2

m
kso


  is a recast form of the spin orbit 

coupling constant and 

2













m
so


 which is 

neglected due to spin orbit  coupling   is small. The 
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Scattering geometry of two-dimensional electron 

gas with Rashba spin-orbit interaction on the spin-

orbit lateral superlattice shown in Fig. 1 [13] 

Fig.1.Two-dimensional electron gas scattering 

geometry with Rashba spin-orbit interaction on the 

spin-orbit lateral superlattice. The reflected r and 

incoming  i  spinors are the eigenstates of Rashba 

Hamiltonian with spin-orbit coupling constant 1  and 

wave vectors belonging to the same Fermi contour 

[13]. 

In many two-dimensional electronic systems the 

main mechanism of spin relaxation is the Dyakonov – 

Perel spin relaxation mechanism [14, 15]. In this 
mechanism electron spins sense an effective 

momentum dependent magnetic field randomized by 

electron-scattering events, which leads to relaxation of 

electron spin polarization. In the last decade, a number 

of theoretical and experimental studies of the features 

of Dyakonov – Perel spin relaxation were published 

[16–19]. This has been shown in Ref. [20] that the 

spin relaxation time for two-dimensional electrons 

depends not only on the material parameters, for 
example, the spin-orbit interaction strength, electron 

mean free path, etc., but also on the initial spin 

polarization profile. The spin-orbit coupling defines 

the electrons spin-relaxation time in semiconductor 

heterostructures and in ordinary semiconductors 

[21]. So it has a significant role in the physics of 

diluted magnetic semiconductors [22]. 

ONE-DIMENSIONAL RING WITH SPIN–

ORBIT INTERACTION 

Nanostructures with ring geometry are of great 

interest, because they provide unique opportunities for 

studying quantum interference effects, for example, 

the persistent current and the Aharonov–Bohm effect. 

The theoretically studying of the persistent 

current of electrons without free spin in the one 

dimensional ring was shown in Ref [23]. Founding 

shapes and periods of the current oscillations created 

great interest. The current oscillations’ shapes and 

periods were found. Periodic dependence on a 

magnetic flux of the persistent current is one of the 
important properties of it. That effect occurs for the 

isolated ring [24] and also the ring connected to an 

electron reservoir [23, 25]. The theoretically studying 

of the magnetic moment of a 2D electron gas with the 

Rasba spin–orbit interaction in a magnetic field was 

investigated in Ref [26]. The persistent current, the 

electronic thermal capacity in the dimensional ring 

have been investigated in [30, 31], [32] respectively. 

Oscillations of the magneto transport [27–29], and the 

magnetic properties [33] in the dimensional ring have 

been studied. An obvious analytic expression is got by 
taking into account the spin-orbit interaction in the 

Rashba model [34] for the persistent current and 

magnetic moment of the electron gas in one 

dimensional ring. 
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Over the ten years, great attention has been 

dedicated toward control and engineering of freedom 

spin degree at mesoscopic scale, usually referred to as 

spintronics [35]. 

Diluted magnetic semiconductors is a prime class 

of materials for spintronics. These are solutions of the 

A2B6 or A3B5 with a high density of magnetic 

impurities (usually, Mn). For combining 
semiconductor electronics with magnetism DMS is 

one of the best candidates. The strong s-d exchange 

interaction between the local magnetic ions and the 

carriers leads to Diluted magnetic semiconductors 

offers us with an interesting possibility for tailoring 

the spin splitting and the spin polarization [36]. 

 The spin-orbit interaction effects on the one-

dimensional quantum ring properties has attracted 

much attention [37]. In Ref [38] have studied the 

Rashba SO interaction, the effect of the magnetic field 

the finite temperature and also the s-d exchange 

interaction on the conductance of a DMS hollow 
cylindrical wire.  

The specific heat and magnetization of a diluted 

magnetic semiconductor (DMS) quantum ring in the 

presence of magnetic field have been calculated by us 

in the paper [39] and also we take into consideration 

the effect of Rashba spin-orbital interaction, the 

exchange interaction and   the Zeeman term on the 

specific heat. Additionally, in diluted magnetic 

semiconductor quantum ring, we calculated the 
electrons energy spectrum. Furthermore, at finite 

temperature of a DMS (Diluted magnetic 

semiconductor) quantum ring, the specific heat 

dependency on the magnetic field and Mn 

concentration have been calculated by us. In Fig. 2 

show us the average magnetization of diluted 

magnetic semiconductors quantum ring as a magnetic 

function and Rashba spin-orbit coupling constant 
  160 meV. nm at fixed Mn concentration x =

0.05 and T = 10 K. 

The magnetization changes abruptly with a small 

increase in H and the peak is observed after which the 

magnetization starts to decrease. 

Fig. 2. The average magnetization of diluted magnetic semiconductors quantum ring as a function of magnetic with Rashba 
spin-orbit coupling constant  a = 160  meV.nm at fixed Mn concentration x=0.05 and T=10 K [39]. 

The magnetization of electrons in a diluted 

magnetic semiconductor quantum ring have been 

investigated in the paper [40] by us. The Rashba spin-

orbit interaction, the exchange interaction and the 

Zeeman term effect are taken into account by us and 

also we have calculated wave function and energy 
spectrum of the electrons in DMS quantum ring. 

Likewise, as a function of the magnetic field at finite 

temperature of a diluted magnetic semiconductor 

quantum ring for strong degenerate electron gas, the 

magnetic moment has been calculated. 

We have theoretically studied the magnetic 

properties and electronic spectra of a Diluted magnetic 

semiconductors quantum ring in externally applied 

static magnetic field in the paper [41, 42]. It has been 

shown that if Mn concentration rise, the compensation 

points reduce Also, it was obtained that with 

increasing manganese content in the DMS quantum 
ring a transition to the paramagnetic from the 

antiferromagnetic properties one occurs for finding 

DMS ring electrons magnetization it is necessary to 

obtain in the ring, the expression of the electron gas’s 

free energy. That equation can be determined from the 

classical partition function Z. We express the given 

non-degenerate energy spectrum by a sum over all 
possible states of the system 

 
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In here, 
TkB

1
 and Bk  –is the Boltzmann 

constant and T is the thermodynamic equilibrium 

temperature.  

ZTkF B ln                              (7) 

We use the expression of the free energy of the ring 

for calculation the magnetization of the electron gas: 
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As it is seen from Fig. 1, with changing of the 

AB flux at fixed temperature the magnetization for 

free electron model system (x=0) varies from negative 
to positive values, such a behavior is typical for 

antiferromagnetic systems.  

The exchange interaction between the localized 

angular moments changes with increasing in the Cd1-

xMnxTe solid solutions Mn concentration and this 

leads to change in the magnetization of the DMS 

quantum ring. The calculations showed that, a 

transition from the antiferromagnetic properties to the 

paramagnetic one is observed in a DMS quantum ring 

as the manganese content increases. 

With changing the AB flux at fixed temperature, 

the magnetization x=0.0004 varies to negative values 

from positive for Mn concentration in the non-

interacting DMS quantum rings, which is typical for 

paramagnetic systems. When = l and where l is 

integer or half integer, as it can be seen the magnitude 
of magnetization is equal to zero. 

These points are called “Aharonov-Bohm 

compensation points” at that time the magnetization 

disappears at fixed temperature and magnetic flux 

varies. 

Fig.3. Dependence of the magnetization in terms of  on the magnetic flux for the cases where Mn concentrations x=0, 

g=0, and x=0.0013, g=-1.67 for  x = 0.08. 

QUANTUM DOTS IN THE PRESENCE OF THE 

SPIN–ORBIT INTERACTION. 

The spin of an electron confined in a 

semiconductor quantum dot is a promising candidate 

for a scalable quantum bit [43, 44]. The electron spin 

states in quantum dots are expected to be very stable, 

because the zero dimensionality of the electron states 

in quantum dots leads to a significant suppression of 

the most effective 2D spin-flip mechanisms [45]. 

During the past few decades, spin physics has 
attracted substantial attention in semiconductors. 

Experimental and theoretical studies have made it 

possible to fabricate Nano-structured semiconductor 

devices [46, 47] with quantum confinement in all 

spatial directions. The size of these structures are 

typically consist of several nanometers and are usually 

known as objects of zero size or, more technically 

called as quantum dots [48]. With the advent of 

modern manufacturing technologies, such as 

molecular beam epitaxy, selective ion implantation, 

nanolithography and etching and it has become 

possible to design such semiconductor quantum 
heterostructures in which the electrical properties of a 

quantum dot are very sensitive to the spin of electrons. 

In this context where devices are controlled by spin-

polarization is “Spintronics” [49, 50]. This leads to 

offer of many devices like spin filter, spin transistors 

etc. Investigation of spin-dependent phenomena in 

low dimensional systems has attracted a rage over the 

years. Spin-dependent phenomena offer opportunities 

to advance many optoelectronic devices in which 

these devices can be controlled by intrinsic spin-orbit 

interaction. The presence of a heterojunction leads to 

inversion asymmetry of the confinement potential in 

semiconductor nanostructures, such as GaAs, InAs 

and In1-xGaxAs quntum dots, quantum wells and 
quantum wires.  

 Electron-phonon interaction plays an important 

role in defining the transport and other properties of 

quantum dots. Electron-phonon interaction leads to 

various physical phenomena, such as 

superconductivity, polaronic effect, magneto phonon 

anomalies etc. Thus it is our main target to learn the 

polaronic effects in the energy states of an electron 

and other quantum structures. It was theoretically 

studied in Ref [51] that the RSOI effect on an electron 

polaronic energy spectrum in a 2D parabolic quantum 

dot of a polar semiconductor. There is extended 
investigate to the bound polaron difficulty where the 

electron is bound to a Coulomb impurity. Thanks to 

modern advanced technologies, it has become possible 
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to study the energy levels of electrons of various types 

of quantum dots. In [38–42, 52–54] has extensively 

studied the orbital and spin magnetization of those 

systems over the last years. The point of interest is 

that the magnetization provides information on the 

multi particle dynamics of the dots in an external 

magnetic field. Additionally, an extensive study of 

magnetic properties of nanosystems [56-59] is 
required by recent development of sprintronics. The 

spin states in the quantum dots are promising 

candidates for realizations of qubit in the quantum 

computing [60]. The design of the magnetic properties 

of semiconductor quantum dots and energy shells is 

controlled by the electron spin [48-50]. For III–V 

semiconductor nanostructures the interaction among 

orbital angular and spin momenta [5] has an important 

role in the energy spectrum formation (spin–orbit 

interaction). When the potential through which the 

carriers travel is inversion asymmetric, the spin–orbit 

interaction eliminates the spin degeneracy of the 

energy levels even without external magnetic fields. 

The effect of the spin–orbit interaction on the electron 

magnetization of small semiconductor quantum dots is 

theoretically studied in Ref [61]. Moreover, In Ref. 

[61] a study of the effect of the spin–orbit interaction 

on the magnetic susceptibility of small semiconductor 

quantum dots. These characteristics show quite 
interesting behavior at low temperature. There are 

many investigations on the thermodynamic properties 

of quantum dots, because of their huge potential for 

future technological applications [51-54]. In the 

presence of the spin Zeeman effect the specific heat 

and entropy of GaAs quantum dot and Gaussian 

confinement have been studied Boyacioglu and 

Chatterjee [62]. At low temperature they observed a 

Schottky-like anomaly in heat capacity while that 

anomaly approaches a saturation of 2kB with rising 

temperature. 

Fig. 4. The dependence of 

Bk

c
 as function of temperature and Mn concentration at fixed H =5Tl.[68]. 

Boyacioglu et al [63] investigated that 

diamagnetic and paramagnetic effects in a Gaussian 

quantum dot can create the total magnetization and 

susceptibility. The magnetic properties of a quantum 

ring and dot using a three-dimensional model are 

calculated by Climente et al. [64]. 

In the presence of external electric and magnetic 

field the thermal and magnetic properties of a 
cylindrical quantum dot with asymmetric confinement 

has been studied in the paper [65]. In [66] have been 

investigated the thermodynamic properties of an InSb 

quantum dot in the presence of Rashba spin-orbit 

interaction and a static magnetic field. Fundamental 

part of materials for spintronics forms diluted 

magnetic semiconductors (DMS). They are
62BA  or 

53BA solutions with high density of magnetic 

impurities (usually, Mn).The Zeeman effects and 

exchange terms are taken into account on the heat 

capacity of diluted magnetic semiconductors quantum 

dots and the electron is assumed to be moving in an 

asymmetrical potential in the paper [68]. 

In Fig.3 we demonstrate as function of 

temperature and Mn concentration at fixed H = 5Tl the 

specific heat of the DMS quantum dot in the presence 

of exchange interaction and Zeeman term. According 

to this figure as the temperature is rised the specific 

heat unexpectedly increases and then reduces giving a 
peak-like structur. 
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