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THE SOLUTION OF KANE’S EQUATIONS IN MAGNETIC FIELD IN JANNUSSIS
FUNCTIONS REPRESENTATION

A.M. BABAYEYV, O.Z. ALEKPEROV.
Institute of Physics, Azerbaijan National Academy of Sciences.

370143, Baku, H. Javid ave. 33.

The solution of Kane’s equations in uniform magnetic field in the representation of Jannussis functions is found. The results can be used in
calculations in different models of nanostructures with participating of Kane’s semiconductors in magnetic field.

INTRODUCTION

The solution of the Kane's equations in uniform magnetic

field for the first time w6.1(a)s given by Bowers and Yafet [1]. In

[2] Jannussis obtained the solution of Schrodinger equation for
the lattice electrons in uniform magnetic fields using the special
form of functions, which he called "schrauben" (screw)
functions. Later Jannussis obtained the solution of the Dirac
equation in uniform magnetic field in the form represented
through the screw functions. The solution of Dirac-Pauli
equation which takes into account the anomalous magnetic
momentum of electron in uniform magnetic field was obtained
in [4] by generalization of the method of Jannussis. In this work
the solutions of Kane's equations in uniform magnetic field are
given by the use of Jannussis screw functions. As it is known
the Kane's equations describe the spectra of conduction band
electrons, light and spin-orbital splitting valence bands holes in
A’B? semiconductors such as InSb, InAs, GaAs and others.

THE SOLUTION OF THE KANE’S EQUATION IN
MAGNETIC FIELD BY THE USE OF JANNUSSIUS
FUNCTIONS

In eight-bands Kane’s Hamiltonian the interaction of
conduction band with the valence band is taken into account by
single Kane’s parameter P. The system of Kane’s equations
including the non dispersive heavy hole band have the form [5]:

(@-k-P+B-G-E)¥ =0 (1)
where

-1 1 1
R
0 0 0 % 0 5 A 0

_Tzl 0 0 0 0 0 0 0 @)

-1

. (1) % 0 0 0 0 0 0
NG 0 0 0 0 0 0 0
0 % 0 0 0 0 0 0
0 % 0 0 0 0 0 0
% 0 0 0 0 0 0 0

S O O O o o o o

S O O O O o o O

&

SI=1° © Lo ©

(=]

S O O O o Iy o o

[

|
~

S O O

Iy
Y

|
o &L

- &~

°© °oLTS

W | =

(= - -]

S O O O

o &~

(=]

(=R =i

I
=
g

[=IN )

o -
o -
.

S Ow‘N (]

(=)

S O Mo o o o <o

D)

(=]
(=]

S © O o o O

-E,-A

o &~

(=]

(=)

=)

(=]

-FE

S O O O o o O

-A

3)

“4)

)



A.M. BABAYEYV, O.Z. ALEKPEROV.
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00 0 0 0 0 0 -1 ¥,

(6)

Here P is the Kane’s parameter, E, and A are values of
forbidden gap and spin-orbital interaction, respectively and

k=-v-24 7)
C

The vector potential is chosen in the symmetric gauge
L1
A= 5 [H x 7] 8)

and magnetic field intensity H= He, is directed along the
Z-axis.
As it is known the solution of equation (1) in thel

Here

1
Kx:kx—'_E}vH.y’Ky

cylindrical coordinates with the symmetric form of vector

potential A canbe expressed in terms of Laguerre’s functions.
We will show that the solution of equation (1) with the

symmetric gauge for A in rectangular coordinate system can
be obtained through the Jannussis screw functions. We search
for the solution of Kane's equation (1) in the form

Cu
C,,u,
C,,u,
C, u
=3V, C4’”u4 ©)
salls
Cy g
C,,u,
Cy,ug

where u;- ug-s being the periodic part of wave functions are
defined as in [1] through the combinations of spinors (s=1/2)

and s,p-like band functions |S> s |X> s |Y> R |Z> . However in

contrast to [1] we take ¥y, in the form of Jannussis functions

(cf[1])

e
where ﬂ/ b= is the square of reciprocal magnetic length. The functions ¥, are normalized and obey the relations

C

0
—+z—+
[Ox oy

[g—i%—éz( zy]svk 22, D,

I
J(Ki LK)+ ikrj(— K -iK’) (10)
H
I
=k =S5 A X (1
ﬂ‘H(x—i_ly ka Vzﬂal-[ Tkn 1’ (12)
(13)

Substituting the wave function (9) into equation (1) and taking into account the relations (12-13) we obtain the following

system of equations for the wave function coefficients Cj,:

—iP\n 4,.C;, +sz\/§C4’n —iP

n+1

A, +PL. \EC”" _iP, /MT”) 2,Conir =0
S.n+l

(14)
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o |n+ 2 N [2(n+1) 1
_EC2,n+1 —iP ?ﬂzHcﬁn +sz\/;c5,n+1 —iP (}’l +2)A«HC6,n+2 +P 3 ﬂ./HCZn _sz\/;C&n = 0

(15)
Pyn),.C,,—(E+E,)C,, =0 (16)

2 o n+1

sz \/;Cm +iP 3 AHC“ —(E—Eg)CM =0 (17)
2 o n+1

sz ECZ’"H +iP —3 ﬂ/HCLn —(E+Eg)Cin+1 =0 (18)

iP,/(n+ Z)ZHCZ,HJ —-(E-E )C;,.,=0 (19)

Pk. \EC"” —iP, /@ A,Coni —(E+E, +A)C,, =0 (20)
. /Z(n +1) 1
lP 3 AHCLn _\/;sz C2,n+1 _(E+Eg +A)C8,n+1 = 0 (21)

Relations for energy levels can be obtained in two ways. | C,,,—Cs,., from the equations (16-21) into the (14) and
The first one is to demand that the determinant of matrix of - o

coefficients of C,, —C in the set of equations (14-21)
to be zero. The second by substituting the coefﬁcientsl and C2n+1

. (15). So we would have the following set of equations for C, ,
-+l s

Pk’ P°A, (2n+1
c, J-E+ k; 2 N 1 N Ay(2n+1) 2 N 1 B
' 3 E+Eg E+Eg+A 3 E+Eg E+Eg+A

P, 1 1

- - =0 (22)
3 E+Eg E+Eg+A

Pk’ P’A,(2n+1
C, A-E+ k: 2 N 1 N Ay(2n+1) 2 N 1 B

' 3 E+Eg E+Eg+A 3 E+Eg E+Eg+A
P’A

- u L ! =0 (23)

3 E+Eg E+Eg+A

If to demand that C;, #0 or C, ., # 0 we will have two expressions for the light carriers spectra correspondingly:
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PE( 2 L

P’ 2n+1
. e ) 2 s 1

-E+
3 E+Eg E+Eg+A
P2
+ A r__ ! =0
3 E+Eg E+Eg+A

One pair of solutions of cubic equations (22) and (23) gives
the dispersion relation for conduction band spin-up and spin-
down states correspondingly, but the other two pairs correspond
to light and spin-orbital splitting hole bands with total
momentum projection M along (M=1/2) and opposite (M=-1/2)
to the magnetic field direction.

To obtain the light carriers wave functions Yg—12u=+1/2

k,n

iP./nA,

E+Eg

k,n—1

1 iP
EJ=1/2,M=+1/2 — . >
\ N] lPk,n+l
E+FE

Y

In (26) E is the root of equation (24) or (25) for M=1/2 or
M=-1/2, correspondingly and three roots of each of these
equations correspond to conduction, light and spin-orbital

+
3 E+Eg E+Eg+A

(25)

and Vg —1m=-102 we must put C],n ¢0,C2‘n+1 = (0 and

Cy, #0,C;, =0 in (9) correspondingly, expressing all
C3,n -

functions for the light carriers have been obtained in the
following forms

other coefficients Cg, through them. So the wave

v I E+E,
EJ=1/2,M=-1/2 = 77

(26)

k,n

splitting holes bands. The factors N; and N, are obtained from
the normalization conditions of the wave functions and have the
form

(E E )
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E+E, =0, 27)

i.e. the heavy hole mass is infinite in this model. To obtain the

heavy hole wave functions TE:—Eg, J=3/2M ;=3/2 and

'[/E:_Eg‘Jz_g/Z,Mj:__g/z is necessary to put C; =0 and

C, .4 =0 in (14) and (15). Then if one takes into account

(27) the only nonzero coefficients in the set of equations (14-
15) are C;,.;, Cyp, Cs,+p and Cg,45. Taken by turns C,,, =0 and
Cs,+;=0 we can obtain for the heavy hole wave functions the
following expressions:

¥

¥

where the normalization factors N; and N, have the form

N, _(4n+1)(n+2) 2

Conclusion

The solutions for the three band Kane’s model in magnetic
field in the representation of Jannussis function are obtained.
These solutions can be useful for calculations of some physical
quantities of A’B’ semiconductors and their different structures

E=-E,J=3/2M,=3/2" |n_

1
E=-E,J=3/2M;=-3/2" |y~ 0 '

+§nkzz, N4

0
0

/(n+1)(n+2)¥/
3 k,n—1

] 0
- Vn(n+2)yjk,n+1 '

- l \ % nkzy/k,n+2

0
0

2 2
—ik (n—+)y/k‘nil

Jn(n+2)¥,

(28)

n(n+1)

3 k.n+2

:MJr%(nJrg)kj,

[ such as quantum wells, quantum dots and wires in magnetic

field. As seen from the properties (12) and (13) these functions
also facilitate the construction of coherent states for Kane‘s
model in magnetic field.

We thank Prof. F.M.Gashimzade for helpful discussions.
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A.M. Babaiies, O.3. Ak6sipoB

KENH TAHMKNAPIHIH MATHIT CAWACIHAA MAHHYCCIC ¢YHKCINATAPH TACBIPIHAA WA/

Bircins maqnit sahasinde Keyn tenliklerinin halli Yannussis funksiyalarn vasitesi ile tapilmisdir. Alinan naticaler Keyn tipli
yarimkegirici nanostrukturlarin muixtslif parametrlarinin maqgnit sahasinde hesablanmasinda istifade oluna biler.

A.M. Ba6aes, O.3. AsieknepoB
PEIIEHUE YPABHEHUI KEMHA B MATHUTHOM MOJIE B IPEJJCTABJEHUU ®YHKIUU IHHYCCHUCA

[Nomyueno pemenue ypapHeHui KeitHa B 0OZHOpPOJHOM MarHUTHOM Toiie depes GyHkunu SlHHyccuca. [lomydeHHble pe3yabTaTel MOTYT OBITh
HCIIONB30BaHbI NPH pacyeTax Pa3NYHbIX MapaMeTpoB HAHOCTPYKTYp Ha OcHOBe KeWHOBCKHX IMOIYNPOBOAHHKOB B OJHOPOIHOM MAarHUTHOM
ToJe.
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ANTICIPATING CHAOS SYNCHRONIZATION IN TIME-DELAYED SYSTEMS

E. M. SHAHVERDIEV, R.A. NURIEV, G.N. GASIMOVA
Institute of Physics, Azerbaijan National Academy of Sciences
370143, Baku, H. Javid ave. 33.

R.H. HASHIMOV,
Azerbaijan Technical University, 370073 Baku, Azerbaijan

Using the Ikeda model we demonstrate analytically that anticipating synchronization can be obtained in chaotic time-delayed systems
governed by two characteristic delay times. We derive existence and stability conditions for the dual-time anticipating synchronization

manifold.
The theory is in full agreement with numerical simulations.

PACS number(s):05.45.Xt, 05.45.Vx, 42.55.Px, 42.65.Sf
1. Introduction

There are different types of sychronization in interacting
chaotic systems. Complete, generalized, phase, lag and
anticipating synchronizations of chaotic oscillators have been
described theoretically and observed experimentally.
Complete synchronization implies coincidence of states of
interacting  systems, y(#)=x(t) [1,2]. A generalized
synchronization, introduced for drive-response systems, is
defined as the presence of some functional relation between
the states of response and drive, i.e. y(t)=F(x(t)), [3]. Phase
synchronization means entrainment of phases of chaotic
oscillators, n®,-m®,=const(n and m are integers) whereas
their amplitudes remain chaotic and uncorrelated [4]. Lag
synchronization appears as a coincidence of shifted-in-time
states of two systems, y(¢)= x(t)=x(t-7) with positive t and
for the first time has been studied in between symmetrically
coupled non-identical oscillators [5]. Lag synchronization in
time-delayed systems is investigated in [6-9]. Anticipating
synchronization [10] also appears as a coincidence of shifted-
in-time states of two coupled systems, but in this case the
driven system anticipates the driver, y(¢)=x(t+17) or x=y,
0. An experimental observation of anticipating
synchronization has been reported recently [11]. Possible
explanation of this phenomenon is considered in [12]. The
concept of inverse anticipating synchronization is introduced
in [13].

Chaos synchronization is of fundamental importance in a
variety of complex physical, chemical and biological systems
[14-16]. Application of chaos synchronization has been
advanced in secure communications, optimization of non-
linear systems' performance, modeling brain activity and
pattern recognition [14-16]. Time-delayed systems are
ubiquitous in nature, technology and society because of finite
signal transmission times, switching speeds and memory
effects [17,18]. Therefore the study of chaos synchronization
in these systems is of considerable practical significance.
Because of their ability to generate high-dimensional chaos,
time-delayed systems are good candidates for secure
communications based on chaos synchronization.

In [10] anticipating chaos synchronization was studied in
the case of a single delay time. In [19] it was demonstrated
that by augmenting the phase space of the driven system (by
considering a chain of driven systems), one can accomplish
anticipation times that are multiples of the coupling delay

time. Anticipating chaos synchronization for systems with
two delay times: a delay in the coupled systems themselves
and a coupling delay was investigated (it numerically) in
[20].

In this paper, using the lkeda model, we analytically
generalize the concept of anticipating synchronization to the
cases, when there are two delay times in the coupled systems:
where the delay time in the coupling is different from the
delay time in the coupled systems themselves. We derive
existence and stability conditions for the corresponding
anticipating synchronization manifold. We support our
theoretical results by numerical simulations.

2. Anticipating chaos synchronization in time-delayed
systems with two characteristic delay times

For clarity of presentation we reproduce here the definition
of anticipating chaos synchronization in [10]:
The driver system

dx
- 1
7 v+ f(x;:) (M

synchronizes with a driven system of the form

% o+ f(x ) @

on the anticipating synchronization manifold
x=y. 3)

From Egs. (1-2) it follows that

dax _dy, _

dt dt .
—a(x=y )+ f(x.)=f(x.)=-a(x~y.)

We define the error signal by symbol A: A=x-y. Then

dA
—=-ad4. In
dt
synchronization can be understood from the existence of a

global Lyapunov function of the error signals [21,22]. Thus

many representative cases chaos
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by introducing the Lyapunov function j = i A° we obtain
2

that for o>0 the anticipating synchronization manifold x=y,
is globally attracting and asymptotically stable.

Now we shall consider the case of anticipating chaos
synchronization in time-delayed with two characteristic delay
times; we confine ourselves to the demonstration of
principles using specific example: the Ikeda model [10,20].
Consider the following unidirectionally coupled Ikeda

model.
dx .
E =—0ox+m; Sinx,
dy . .
E =—Qqy+m,siny; +m;Sinx; “)

where a is a positive constant; m;,m, and m; are constants; 7;
is the feedback delay in the coupled systems; 7z, is the
coupling delay.

Now we shall analytically demonstrate that x = Vet
with 7; > 7, can be the anticipating synchronization manifold;

find the existence and stability conditions for anticipating
synchronization, and then compare the analytical results with

numerical simulations.

From Egs. (4) it follows that under the condition

©)

m; =m, +ny;

withr = aand s = (m, —m; )cos X, - It is obvious that A=0

is the solution of Eq.(6). The stability condition for the trivial
solution A4=0 of Eq.(6) can be found by investigating the
positively defined Krasovskii-Lyapunov fuctional

1
Vit) ZEAZ +yJ'_0 A (t+t,)dt,

(where 1> 0 is an arbitrary positive parameter). According to
[10,18,23] the sufficient stability condition for the trivial
solution of Eq.(6) is: r>|s’. Then the sufficient stability
condition for the anticipating synchronization manifold

X=Y, . reads:

a >|m2| (7

The condition ,=m;+m, is the existence (necessary)

condition for anticipating synchronization for the
unidirectionally coupled modified Ikeda model.

We also have numerically studied Eqs.(4). The driver
system x in Eqgs.(4) behaves chaotically for, e.g. 7,=3, a=5,
m;=20. The other parameters' values used in numerical
simulations are =1, m, =3,m;=17. We perform simulations
of (4) by employing an Runge-Kutta-Fehlberg algorithm with
automatic step size control. Figure 1 shows:(a) time series of
the driver x(t) (solid line) and driven system y(#) (dotted line).

After transients, the driven system's trajectory is shifted
T,—-7, =2 time units to the left, thus anticipating the
fully support the

the dynamics of the error 4 = x -y obeys the following  driver. Thus numerical simulations
. s analytical approach.
equation:
dA
o =-rd+s4, (6)
t
5
4k

>
x
-1 i
2 \
2 Ul
4 -
_5 i L 1 i 1 1 L 1 a1 i 1 L 1 1 1 " [ M
0 4 8 12 16 20 24 28 32 36 40
t

Fig. 1. Numerical simulation of two coupled modified Ikeda equations (4):(a) time series of the driver x(?) (solid line) and driven system

10
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y(¢) (dotted line). After transients, the driven system's trajectory is shifted 2 time unit to the left, thus anticipating the driver.

In conclusion, in this paper using the Ikeda model we have
for the first time demonstrated analytically that anticipating
synchronization can be obtained in chaotic time-delayed
systems governed by two characteristic delay times. We have
shown that the anticipation time is the difference between the
delay time in the coupled systems and the coupling delay
time and derived both existence and stability conditions for
the anticipating synchronization manifold.

Synchronization of coupled chaotic systems restricts the
evolution of synchronized systems to the synchronization
manifold and therefore eliminates some degrees of freedom
of the joint system, thus leading to significant reduction of
complexity. In this context from a fundamental point of view,
new types of chaos synchronization, including anticipating

synchronization can be considered as a novel ways of
reducing unpredictability of chaotic dynamics.

Possible practical applications of anticipating chaos
synchronization may exploit the fact that driven system
{anticipates} the driver. For example this phenomenon can
be used for rapid prediction-because no computation is
involved- by simply coupling the identical response system to
the master system; in secure communications anticipation of
the future states of the transmitter (master laser) at the
receiver (slave laser) allows more time to decode the
message; another opportunity is in the control of delay-
induced instabilities in a wide range of non-linear systems.
Also anticipating synchronization may be of interest for the
understanding of natural information processing systems.

[11 L. M. Pecora and T. L. Carroll. Phys. Rev. Lett. 1990,
64, 821.

[2] E.Ott, C.Grebogi and J.A.York, Phys. Rev. Lett. 1990,
64, 1196.

[3] N.F. Rulkov, M.M. Sushchik, L.S. Tsimring and
H.D.I.Abarbanel. Phys.Rev.E 1995, 51, 980.

[4] M.G. Rosenblum, A.S. Pikovsky and J. Kurths. Phys.
Rev. Lett. 1996, 76, 1804.

[S1 M.G. Rosenblum, A.S. Pikovsky and J. Kurths. Phys.
Rev. Lett. 1997,78, 4193.

[6] S. Sivaprakasam, E.M. Shahverdiev, K.A. Shore. Phys.
Rev. E 2000,62,7505.

[71 E.M. Shahverdiev, S. Sivaprakasam and K.A. Shore.
Phys.Lett. A 2002, 292, 320.

[8] E.M. Shahverdiev and K.A. Shore. Phys. Lett. A 2002,
295, 217.

[91 E.M. Shahverdiev, S. Sivaprakasam and K.A .Shore.
Phys. Rev. E 2002, 66, 0472xx

[10] H.U.Voss. Phys.Rev.E 2000, 61, 5115

[11] S. Sivaprakasam, E.M. Shahverdiev, P.S. Spencer and
K.A. Shore. Phys.Rev. Lett.2001, 87, 154101

[12] E.M. Shahverdiev, S. Sivaprakasam and K.A. Shore,

Phys. Rev. E 2002,66,017206

[13] E.M. Shahverdiev, S. Sivaprakasam and K.A. Shore,
Phys. Rev. E 2002, 66, 017204

CHAOS, Special issue on chaos synchronization,
1997, No 4

G. Chen and X. Dong, From Chaos to Order.
Methodologies, Perspectives and Applications (World
Scientific, Singapore, 1998)
Handbook of Chaos Control,
(Wiley-VCH, Weinheim, 1999).
J.K. Hale and S.M.V .Lunel, Introduction to Functional
Differential Equations (Springer, New York, 1993)
L.E. El'sgol'ts and S.B. Norkin, Introduction to the
theory and applications of differential equations with
deviating arguments (Acadamic Press, New York,
1973).

H.U. Voss, Phys. Rev. Lett. 2001,87, 014102

[14]

[15]

Ed. H.G.Schuster

[20] C. Masoller, Phys. Rev. Lett. 2001,86,2782

[21] R. He and P.G. Vaida, Phys. Rev. A 1992.,46,7387
[22] E.M. Shahverdiev. Phys. Rev. E 1999,60,3905
[23] K. Pyragas. Phys. Rev. E 1998,58,3067

E.M. Sahverdiyev, P.H. Hasimov, R.A. Nuriyev, G.N. Qasimova

ANTISIPATSION SINXRONLASMA REJIMININ GECIKSN V3 DUAL-ZAMAN SiSTEMLORINDD
ARASDIRILMASI

ikeda modeli arasdirlib, bele geciken ve dual-zaman sistemlerinds antisipatsion sinxronlasma rejimi tapilib. Oyrsnilen
halda signalin aparan sistemdan (6turiici) aparlan sistema (gabuledici) yayilma vaxti 6turiicide eks-slags xarakterik
zamanindan farglidir. Antisipatsion sinxronlagsma rejiminde gabuledicinin indiki hali étlricinin galecek halina sinxronlasib.
Varliq ve stabillik sertlari tapilib. Analitik ve adadi Gsulla arasdirma naticalari tst-Usta dusur.

9.M. lllaxBepaues, P.I'. 'amuumos, P.A. Hypues, I'.H. KacumoBa

AHTHCUITAITMOHHASI CHHXPOHU3AIIAA XAOTHUYECKHX KOJJEBAHUM B CHCTEMAX C
3AITA3IbIBAHUEM C IBYMS XAPAKTEPHBIMU BPEMEHAMMU

Ha ocnoBe uccnenoBanus moaenu Mkensl HaliieH peKUM aHTHUCHITAIIMOHHOW CHHXPOHHU3AIUN Xa0THYECKUX KOJNCOAHUH B CHCTEMax ¢
3ama3bIBAaHAEM C JBYMs XapaKTEpHBIMH BPEMEHaMH, KOTZIa BpPEeMs PaclpOCTPaHCHUS CUTHAJIA OT BEAYNIMHA CUCTEMBI (TIEpeIaTymK) K
BEJIOMON cHCTeMe (IIPUEMHHUK) OTIMYACTCS OT XapaKTePHOrO BPEMEHH OOpaTHOW CBsi3M B mepenaTduke. (B pekume aHTHCHUITAIMOHHOM
CHHXPOHHU3AI[MHM HACTOSAIEC COCTOSIHAC MPUEMHHKA CHHXPOHHU3UPYETCS K OyAyIIeMy COCTOSHHIO Tepenaryrka). [lomydeHbl yciIoBUS
CYIICCTBOBAHHUSA M CTaOMIBHOCTH AHTHCUIAIIMOHHOTO PEXUMA CHHXPOHH3AINNU.AHATUTHYCCKAC BBIBOJBI MOITBEPIKIAIOTCS UYHCICHHBIM
MOJICIIUPOBAHUEM.

Received: 24.09.02
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THE REFLECTION OF THE PARALLEL-POLARIZED ELECTROMAGNETIC WAVE AT
ITS INCIDENCE ON THE TWO-LAYER DIELECTIC-METAL SYSTEM UNDER THE ANGLE

E.R. KASIMOV
Institute of Physics, Azerbaijan National Academy of Sciences
370143, Baku, H. Javid ave. 33.

Conditions of the full reflectionless absorption origin of the parallel-polarized electromagnetic wave at its incidence under the angle on
the absorbing dielectric layer, applied on the metal substrate, were found. Their dependencies on the wave cover thickness, the incidence
angle and dielectric properties of the cover material have been investigated.

The problem of the cross-polarized radiation reflection,
falling under the angle on the plane two layer dielectric-metal
system was solved in paper [1] and conditions of full
radiation absorption origin in such system at strictly fixed
selective values of the radiation frequency, the layer
thickness and dielectric properties of the cover material were
found. Taking into consideration the interest to the
reflectionless wave absorption origin in layered media, we
will observe the problem of the parallel-polarized radiation
absorption from the plane two-layer dielectric-metal system
as the next step in this direction.

For the given type of the incident wave polarization the
complex expression of the coefficient p of the wave
reflection from the examined plane two-layer system is equal
to:
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where Z . = Zthyl is the input resistance of the two-layer

system, Z,, Z are wave resistances of the vacuum and the
. . 2 .
cover substance, respectively, cos a = /1 —sin” «, / E qis

the wave incidence angle on the two-layer system, « is the
angle of the wave refraction in the cover layer and is at the
same time the angle of the wave incidence on the dielectric-
metal interface, [ is the thickness of the cover layer [2-4].

The wave spreading constant y in the cover substance
included in the expression for the input resistance Z;, is equal
to:
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where : y, = i27r/ A, A is the constant of the wave spreading

and the wave length in the vacuum, respectively.

The reflectionless wave absorption in the examined two-
layer system may occur in the point of one of minima of the
dependence of the modulus of the wave reflection coefficient
p on the thickness of the cover layer / and if the condition
p=0 1is fulfilled in this point. Let us add notations

p= sin’ a, and A, = A/+1-p, ., where 4, is the wave

length in the free space in the direction of the wave spreading
relatively to  the normal of the layer surface. As

Z=12Z, / \/; then taking into account expression (1)-(2) we
get:
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The dielectric constant & and dielectric losses &” of the
cover substance are connected with the refraction coefficient
n and the factor of dielectric losses y of this resistance by the
known equations:

g':nz(l—yz); g =2n"y ; @)
where n = A/, ; y =tgd2; &= arctg &'/¢ ; A, is the wave
length in the cover material.

For the convenience of the further examination we take
by the analogy, that:

=6°(1-¢") ;¢,=26°¢ ; (5)
where £=2, /7, ; 6=1g8/2; §=arcigs, ¢, ; ;1;,

is the wave length in the cover substance at the wave
spreading under the given angle to the limiting plane
surfaces.

Using these notations in equations (3), we will obtain
after the transformations:
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Let us divide the equation (6) on the imaginary and real
parts. After respective transformations we will get two

equations, which describe conditions of the reflectionless
wave absorption in the examined system:

where x:l/ﬂ,'g ; N

Yshdmx€ + sindme =0 ; (7)
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2N, -1
N(1+Y7 )= th2m - Yig2me . (8) x=— —+4 (11)

From their joint solution we obtain: where N, is the number of the zero of the minimum

2N dependence p on I, 4 is in general case small, but not the
thdmk = N +72 )41 ; (9)  zero value, determined from the solution of equations (10)
and (11)
2NY Ao 1 2NY
= =—arctg . (12)
igdm N1+Y?)=1" (10) dr N211+Y2i—1
Since the conditions of the reflectionless wave absorption Substituting the expression (11) in equations (9) and (10)

in the system are fulfilled in minimum points of the and excluding from them the value A as the intermediate
dependence p on / and at cover thickness close to values parameter, we obtain:
multiple to 4, we get: |

2NY 1, (1+N) +(NY)

(2N, - 1)+ arctg =—1In (13)
’ N(1+Y?)=1 26 (1-N) +(NY)
The equation (13) determines the connection between | Then as it follows from equations (11) and (12), the

values N and Y, and consequently, between n, y, £ and &’ of  required thickness of the cover layer is determined from the
the cover substance of the two-layer system, at which the full ~ expression:
absorption of the incident radiation occurs in the system. |

I, 1 [(2N, —1)+amg 2NY (14

A BfI-p| 4 N(1+77)-1
2= P | Obtained equations were used for the determination of the
. 11“\50 ) ¢ ‘ / ] ) dependence between selective values &,&", [, of the cover
€| 50\ 1:\ 1 === A 30 “Vﬁ substance, the length of the radiation wave A and the angle of
| A} / M the wave incidence ¢, at which conditions of the full
= ) absorption of the electromagnetic radiation in the examined

two-layer system is fulfilled. These dependence are given at
Ny=1,2 and 3 on fig.1. At low angles of the wave incidence
o and in the region of high values & all curves of the family
are placed upper of their limiting dependence for ¢,=0, which
corresponds to the case of reflectionless wave absorption at
its normal incidence. At higher values ¢, curves have S-
shaped form and with growth ¢, the curves bend point shifts
to the part of larger values & with the visual growth of the
value &”. Then in the region of low values & the part of
family curves places below the limiting dependence for ¢;=0.
The similar type of family curves £'(¢') exits and with N,
growth, but with closer its position to the X axis (see fig,1b,c)

Selective values of the cover layer thickness /, reduce
with ¢y, & growth and increase with N, rise, but numerically,
they are always higher than the value multiple to 4 These
deflections value from the multiplicity A considerably
increases with ¢ and N growth (see fig.2).

Selective values of the wave incidence angle and
respective cover layer thickness, at which the wave reflection
is absent, may be determined by equations (13)-(14) or

Fig.1. The dependence between the dielectric constant & and graphically by means of fig.1,2; if values &, and &y of the

dielectric losses & at the reflectionless absorption of the ~ cover substance are known for the given frequency of the
cross-polarized wave, incident under the angle o, on the incident radiation. As it follows from fig.1, at incidence
two-layer dielectric metal system at Ng=1,2,3. N, is the angles, lesser than 60° and at any N, dependencies ¢&"(¢),
number of the zero minimum of the dependence of the except the region &=1,5; are placed upper of the limiting

modulus of the wave reflection coefficient on the

. curve, corresponding to the case of the normal wave
thickness of the cover layer. ’ P £

incidence (a;=0). If the working point with such values ¢ ,
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& 1is placed in the coordinate plane [¢&, &£'] between 2
limiting curves with values Ny=1 and N,=K, then it should be
expected in such cover substance no smaller, than k-1 of
strictly fixed angles of the wave incidence and respective
cover layer thicknesses, at which the cover fully absorbs the
wave. The greater selected thickness of the cover layer
corresponds to the greater angle of the reflectionless wave
incidence. At a>60° the appearance of additional reflectionless
angles of the wave incidence are possible, even in limits of
one and the same values N,.
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Fig.2. The deflection value 4 of the cover layer thickness on
multiple values of wave length quarter in the cover
substance versus its dielectric constant and the incidence
angle ¢y at Ny=1,2.

For illustration fig.3 presents dependencies of the

modulus of the microwave radiation reflection coefficient
with the wave length 3.2 cm on the incidence angle on the
dielectric-metal system, in which the ethyl spirit and acetone,
having according to references at the indicated wave length
values £=3.85, £'=10.5 and £=20.5, £'=3.55, are chosen as
cover substances. As it follows from the figure, the full
microwave radiation absorption is possible in the ethyl spirit
layer at wave incidence angles 38.5°(N=2) and 59.2°(N=k)
and corresponding to these angles relative thickness of the
cover substance layer, equal to //4 =0.41 and 0.74. For the
cover on the base of acetone, the reflectionless incident
radiation absorption occurs at wave incidence angles
57.6°(N=2), 69.6° (N=3), 73.2° (N=4) and corresponding (to
these angles) relative thickness of the cover substance layer,
equal to //A=0.17,0.28 and 0.49.
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Fig.3. The dependence of the modulus of the cross-polarized
wave reflection coefficient p on its incidence angle o on
the two-layer electric-metal system.

Conducted theoretical investigations confirm the
possibility of the experimental phenomena observation of
the reflectionless absorption of the electromagnetic radiation
of the given frequency in the two-layer dielectric-metal
system at strictly fixed of layer thicknesses for the applied
cover materials and for incidence angles of a wave with the
fixed polarization.
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DIELEKTRIK-METAL IKILAYLI SISTEM® BUCAQ ALTINDA DUSSN PARALEL-POLYARIZASIYALI
ELEKTROMAQNIT DALGASININ 9KS OLUNMASI

Metal tabagaya ¢akilmis udan dielektrik layina bucaq altinda diigen paralel polyarizasiyal elektromaqgnit dal§gasinin tam aks
olunmayan udmasinin amslagalma sartlori tapilmigdir. Homin gartlerin 6rtiylin galigindan, dalganin disma bucagindan ve

ortlyun dielektrik xassalarinden asilihgl tedqgiq edilmisdir.
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OTPAXKEHUE MMAPAJUIEJIbHO-TTIOJIIPU3OBAHHOM 3JIEKTPOMAFHPITHOI>1
BOJIHBI ITPU EE TAJIEHWU IO/ YTJIOM HA JIBYXCJIOUHYIO
CUCTEMY JUDJIEKTPUK-METAJLI

Haiinensl ycioBHsi BOZHUKHOBEHHSI IIOJIHOTO O€30TPa)KaTeNbHOTrO IMOTJIOUIEHHS MapalieNbHO-TIOISIPU30BAHHOIO 3JIEKTPO-
MarHUTHOTO M3JIy9EHHs IPU €ro MaJCeHUH MO YIJIOM Ha CJIOHW MOTJIOIIAIOINET0 JUINIEKTPHUKA, HAHECEHHOTO Ha METaJluInyuec-
KyI0 TTIOANOXKyY. VccnemyeTcs X 3aBUCHMOCTD OT TOJIIIMHBI TOKPBITHS, yIJIa MAafeHUs! U JUIIEKTPUUECKUX CBOICTB MaTrepua-
J1a TIOKPBITHS.
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THE INFLUENCE OF THE TEMPERATURE MODE ON THE RELAXATION PROCESS
VELOCITY IN POLYMERS

N.F. AHMEDOYV, S.K. ABUTALIBOVA, T.I. ISMAILOVA, F.A. AHMEDOV
Baku State University
Acad. Z. Khalilov str., 23, Baku

The relaxation process in polymers has been investigated at quasi-linear temperature variation. Taking into consideration the fact, that
the relaxation time obeys the Alexandrov-Lazurkin-Gurevich formula, the rheology equation of visco-elastic body has been solved. The
analysis of the obtained solution has show that if the polymer has high elasticity then the temperature, at which the process rate is equal to
zero, should not be more, than half of the two characteristic temperatures sum. It has been revealed, that the process rate at some temperature
range passes through minimum. This fact is explained by the change of the macromolecules conformational state.

The main peculiarity of mechanical properties of
polymers is a relaxation processes proceeding in them. The
processes nature sharply depends on the temperature regime.
The thermo- mechanical method is convenient for
determination of specific characteristics of mechanic
polymers properties [1]. The essence of this method consists
of the determination of the temperature dependence of the
deformation on the temperature at the constant interaction on
the polymer of the external voltage. In the present paper the
high-elastic state of the amorphous linear polymer is
reproduced by a model of the visco-elastic Kelvin body, and
the delay time is described by the Alexandrov-Lazurkin-
Gurevich formula [2].

u-yo
T=r,e X . (1)
In thermomechanical investigation the temperature
varies in time. Then in the previous formula 7 and 7 will be
7(t) and T(t), respectively. Let the temperature varies
according to the following dependence on time,

T=T +T(I-¢“), @

where 7., Tr are glassing and yielding temperatures,
respectively and « is the scale factor. At thermomechanical
tests the linear heating regime is usually applied. The choice
of the indicated regime of the temperature variation on
time allows to avoid mathematical difficulties. At not large
times the selected dependence slightly differs from the linear
one.

The rheology equation of the visco-elastic body, applied
to the Kelvin model, may be put down in the following
simple form [2].

de _
dt

o 1
D)

Dividing on variables and integrating, we obtain

)

; 3
2 7(1)

o2
c=—|1—-exp(—
Z p(

With regard (1) and (2) in (3) we receive the deformation
dependence on the time in the following form:

1 u—yo
g=—sl—exp| —— | exp| - —dt' |,
p 70£ p{ R(T, +T,(1—¢ " )}
or
e=2 I—exp—A( ! ]+i— ! ]+A X
E at\T,+T,-T\" 4T) T.+T,-T.\" 41,
“)

1 A T T A 1 1

X 1+ — . + ———

T+ TA+LNL+T,-T T.+T,-T.) 4T+ )\T T,
u—yo | As it is seen from the obtained expression at 7=7, the
where 4 = R exponent is equal to zero, and respectively, the deformation is

Simplifying the integration result we have confined by
first two sum terms in the range of the integral exponentional
function and neglected logarithmic terms because of its small
value in comparison with other terms.

equal to zero, but at 7=T7,+T7 the deformation approaches to

o
— . The same result is obtained for the deformation of the
E

examined model by the time at the constant voltage.
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According to the problem condition 7, corresponds to the
polymer transition from glassy to high elastic state. At T< T,
the deformation of the examined model is equal to zero. It
means, that neither segments nor macromolecules can change
their mutual position (order) under the influence of the
applied voltage. As a rule, at thermomechanical tests the
applied voltage is smaller than that of the forced deformation.
The deformation equality to zero at =T, shows, that in the
present problem the above-mentioned condition is fulfilled,
the heat motion and activation under the influence of the
external voltage are not yet enough for the potential barrier
passage, the interaction energy between kinetic units,
including segments, exceeds that of the heat motion and the
work, conducted by the external force, all together.

The separate segments transition occurs at the
temperature growth and twisted macromolecules acquire the
opportunity to rectify under the influence of heat and external
force.

The typical peculiarity of polymers in the glassy state
with hard chains is the structure porosity and the possibility
of the free links motion. It is explained by the low fragility of
polymers in comparison with low-molecular glasses, where
small molecules may transfer as a one whole, and where any
visible growth of the intermolecular distance, being higher
than the equlibrium distance, means the start of the material
division on component parts.

Though the transition velocity of separate links of the
glassy polymer may be negligibly low, it increases at the
effect of the external voltage, making easier the internal
potential barriers passage. Therefore the quick variations of
the macromolecule conformation at rather great loads are
possible. The voltage growth leads to the A coefficient
reduction, as it is seen from the formula (4). The forced
elasticity occurs at yo . From that moment according to

formulas (5) and (7) the deformation velocity and relaxation
time in the narrow temperature range quickly grows and then
the process velocity is set by the polymer transition in high-
elastic state.

The obtained dependence of the deformation on the
temperature shows, that the deformation develops non-
monotonous. Its variation velocity has the following form.

2
E_ oa 4T +2AT—A(TC+TT)_ef(T)

dT ~ E 2 2 )
arty 2T°(T, +Ty -T)
where f{T) is the exponent of the exponential function of the
expression (4).
As it is seen from the latter equation the deformation
development velocity depends on the relationship between
the coefficient A and the temperature. It may be both positive

and negative, and at
J1+4

it is equal to zero, and this condition is fulfilled for any 4>0,
ie. U >yo.

=
4

Tc+TT_]

(6)

The calculations show, that when the coefficient A varies
from 4x10™ (T,+T7) up to 2x10° (T.+T;) the temperature, at
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which the relaxation rate is equal to zero, varies from 0,02
(T.+T7) up to 0,5 (T,+Ty), and the straight line, determined
by the expression 7=0,5(T.+T7), is asymptote of the given
dependence .

The A coefficient value characterizes the hardness of the
deformed polymer system. The obtained results mean, that
whatever hard is the macromolecule, if it reveals the high-
elasticity, then the temperature, at which the
thermomechanical curve is going out on the straight line,
should not exceed the half of the sum of two characteristic
temperatures.

At high values of the coefficient 4 in the temperature
interval from 7, up to 7, the deformation velocity is negative,
i.e. the compression of the polymer block occurs. It is
described by the fact, that the frozen structures are defrosted,
kinetic units acquire some mobility and under the force
effect, caused by the system hardness, are much tighter
packed. At further temperature increase the modulus of the
negative velocity reduces up to zero (7= T,), and then the
deformation grows. The wider is the temperature range of
negative values of the deformation velocity, the higher is the
hardness of the polymer system. The upper limit of this
region approaches to the half of the sum of two typical
temperatures. It should be noted, that the “collapse” velocity
of the polymer block is very small, it is much smaller, than
the velocity of the temperature variation is [3,4].

The smaller the molecule flexibility is, the larger is the
segment sizes, the higher is 7, the higher is the transition
temperature of the polymer chain from one conformational
state into another. Since the segment value is directly
connected with the 7, value, then the latter also depends on
the test mode. At the reduction of the temperature action
duration, i.e. the flexibility variation might not be revealed at
its velocity growth, so as the macromolecule deformation,
demanding the passage of the intermolecular and
innermolecular interaction forces, occurs within the final time
interval.

By comparing the obtained formula with the formula of
the deformation relaxation at the constant temperature we
obtain for the time delay the following expression:

ATy [2Ty (T, 4T )=T(2T,+T; )]
8TT (T +Tr =T )(T,+Tr )

T=1,€ (7)

As it is to be expected, the time delay depends on the A
coefficient, expressing the activation energy of the process
and temperature. It is monotonously growing function of the
activation energy. But versus the temperature the time delay
has high values at temperatures, close to 7, but it sharply
increases at the negligible growth. This reduction is not
monotonous. Not only the variation of the time delay value
occurs, but also that of the velocity. At the achievement of
the temperature, determined by the formula, the velocity of
the time delay fall passes through minimum.

®)
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Taking into consideration the fact, that the activation
energy is higher, than that of the heat motion and
(2T.+T7)<2Tr, we get the equality of temperatures 7, and T,
by determined formulas (6) and (8), respectively. It follows,
that temperatures 7, and 7,, for the examined model are
structurization temperatures or neck-formation. The
structurization temperature (neck-formation) depends on the
loading mode (deformation) and the velocity of the
temperature variation. This dependence is not seen from the
formula (8). If we take into consideration, that 7, and 77 are
functions of the load and temperature variation mode, then
the dependence of the structurization temperatures on these
modes becomes obvious [5].

The process velocity is determined by the coefficient &
in the formula (2). At the fulfillment of the given formula
linearity, i.e. at a<<lI, the velocity of the temperature
variation may be accepted.

ar

—=aT
dt !

The velocity of the temperature variation increases with
the o growth, and respectively, 7, grows, the system
hardness becomes higher.

Such circumstance corresponds to the temperature time
superposition in polymers. The temperature growth,
intensifying the heat motion, accelerates the rectification and
segment transition under the voltage effect, the temperature
reduction, delay these processes, decelerates deformation.
But with the growth of temperature variation velocity, the
deformation is not in time. At the change of the latter, the
process is delayed, and the velocity is reduced. As it was
noted, at the linear amorphous polymers, the sample
extension is made of 2 components, one of which is caused
by the chain smoothing, and the second one is caused by the
transition of segments one with respect to another. In some
time of the mechanical and temperature fields application the
equilibrium between these fields effect is established and
almost stationary mode begins.
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POLIMERLORDS RELAKSASIYA PROSESININ SURSTINS® TEMPERATURUN
DOYISMD TORZININ TOSIRI

isde temperaturun kvazixatti deyismesi halinda polimerlerde relaksasiya prosesi 6yrenilmisdir. Tedgigatda relaksasiya
muiddatinin Aleksandrov — Lazurkin — Qurevi¢ disturuna tabe oldugu gsabul edilerek 6zli elastik jismin reoloci tanliyi hall
olunmusdur. Hallin tehlili gbsterir ki, polimer ylksak elastikliya malikdirsa, prosesin suratinin sifra barabar giymatine uygun galen
temperatur iki xarakteristik temperaturun jeaminin yarisindan béyik olmamaldir. Malum olmusdur ki, relaksasiya prosesinin sirati
muayyan temperatur intervalinda minimumdan kegir. Bu fakt polimerin konformasiya halinin dayismasi ils izah edilmigdir.

H.®. Axmenos, C.K. A6yrauasiooBa, T.U. UcmannoBa, @.A. AxmenoB

BJIMAHUE TEMIIEPATYPHOI'O PEXKXUMA HA CKOPOCTDB PEJTAKCAIIMOHHOI'O ITPOLECCA
B TIOJIMMEPAX

BbIT M3ydeH penakcalMOHHBIA NPOIECC B IMOJIMMEpax IPH KBa3WIMHEHHOM H3MEPEHUH TeMIepaTypsl. IIpuHUMAas, 4YTO Bpems
perakcauuu nomuuHsercs Gopmyne Anexcanapa-Jlasypkuna-I'ypeBnda, ObUIO PEIIEHO PEOJOTHMYECKOE YpaBHEHHE BSI3KOYNPYIoro Teia.
AHaJIM3 NMOJIYyYEHHOTO PELICHNUS 110Ka3all, YTO €CIIM MOoJIMMEP 001aiaeT BHICOKOH AIACTUYHOCTBIO, TO TEMIIEparTypa, P KOTOPOH CKOPOCTb
Iporiecca CTAaHOBUTCS PaBHOM HYJII0, HE JOJDKHA MPEBBIILIAThH MOJOBHHBI CyMMBbI IByX XapaKTEPHCTHUECKHX TeMIepatyp. Bbuio BbIsABIEHO,
YTO CKOPOCTh Ipolecca MPU HEKOTOPOM TEMIIEPaTYpPHOM HMHTEPBANC IIEPEXOIHUT Yepe3 MHHHUMYM. JTOT (akT OOBSICHACTCS M3MEHEHHEM

KOH()OPMAIMOHHOTO COCTOSTHHSI MAKPOMOJIEKYIL.
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THE LOW-FREQUENCY DIGITAL SHAPER OF REFERENCE PULSES

Ch.O. QAJAR, S.A. MUSAYEV, M.R. MENZELEYEV
Institute of Physics, Azerbaijan National Academy of Sciences
370143, Baku, H. Javid ave. 33.

The digital device for reference pulses formation with the high accuracy (<0.3 %) which allows to adjust the phase of a reference signal
of recording systems with low-frequency modulation was developed and constructed.

In microwave spectra of polyatomic molecules
displacements or enlargements of spectral lines related with
the frequency of square-wave stark modulation are often
observed [1].

In particular, this effect may be observed in spectra of
asymmetric top type molecules with double RF-MW
resonances, when magnitudes of its radiofrequencies are near
or coincide with frequency of molecular modulation [2].

To exclude such interactions it was decided to construct
microwave spectrometer with low frequency stark
modulation. For this purpose the square-wave stark
modulator (SWSM), a generator of unipolar rectangular
impulses was constructed earlier [3].

In this paper the description of low-frequency digital
shaper of reference pulses (SRP) is presented (fig.1). It
functionally replaces the available analog phase shifters,
which use at low frequencies is limited by them phase shift
dependence from frequency of modulating pulses,
temperature, magnitude of supply voltage, instability of a
zero line and other factors, in a recording part of standard
microwave spectrometer and enables to adjust phase of a
reference signal of the phase-sensitive detector with the high
accuracy (not worse than 0.3 %).

The digital circuit of SRP (fig.2) consistently divides
frequency of the driving generator and provides a capability
of adjustment of an angle of phase shift between pulses of
SWSM and reference signal of phase-sensitive detector in a
range 0-360° with the step 1°.

The schematic circuit of SRP is presented on fig.3. The
basis of the circuit is decimal counters - dividers D1, D2 and
D3, as which the microchips CD4017 are used. The pulse
former 2, on a signal of coincidence of pulse sequences of
counters D1, D2, D3, forms reference pulses of the
modulating generator on its output. Either fronts or falls of
these pulses (depending on position of the «+ 180» switch)
synchronize the pulse former 1, the similar coincidence
circuit of which receives those pulse sequences of counters
D1-D3, which given by «1», «10», «100» switches positions
and been in congruence with the given angle of shift of a
phase. In result on the pulse former 1 output there are
reference pulses of the phase-sensitive detector moved on a
phase on an angle, unequivocally determined by a position of
«1», «10», «100» and «+ 180» switches. The coincidence
circuits of both pulse formers compose by elements of a logic

microchip 3NO-AND D4 (CD4023). Directly forming units
are the D-triggers of microchip D5 (CD4013).

The angle of a phase shift is a digital function of a
position of the appropriate switches and is independent of the
entrance frequency of the specifying generator and other
factors capable to influence on the analog phase shifter and,
finally, reduce the occurrence of tool mistakes in
measurements.

Presented SRP steadily works in a range of output
frequencies from 0 up to 10kHz. Thus frequency of following
of pulses of the driving generator F=360f, where f is a
frequency of reference (output) pulses. At a level of a supply
voltage of the circuit + 9V the reference pulses in all range of
operating frequencies have the following parameters: on-off
time ratio 2, front duration 250ns, fall duration 200ns.

Thus the increase of a frequency range is possible not
only by usage of more high-speed microchips, but also, if
there is no necessity for the so high accuracy of adjustment of
a phase, by an increase of a step of quantization of a phase.

SRP can find a use as phase rotating intermediate in any
systems of synchronous detecting. In case of use SRP in
structure of microwave spectrometer with molecular
modulation it can be built in structure of the modulating
generator or (and) of the synchronous detector as an
electronic card, or, being supplemented by a power unit to be
made out as the separate device.

»
»

To modulating part

Driving
generator

Shaper of
reference pulses

v

To recording part

v

Fig.1 SRP connection block-diagram
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[1] E. Hirota. Microwave spectrum of isopropanol, J. Chem.  [3] Ch.O. Qajar, S.A. Musayev, M.R. Menzeleyev.
Phys. 2001, v.1, Ne2, p.240-248. «Generator of unipolar rectangular impulses» Proc. of
[2] S.A. Musayev. Reports of AS of Azerbaijan 2001, vol. Az.TU, Baku 2001, p. 141-144.
LVII, Nel-3, p. 38-43.
C.0. Qacar, S.A. Musayev, M.R. Menzeleyev

ASAGI TEZLIKLI 6ZUL iIMPULSLARIN R9Q39MLi FORMALASDIRICISI

Asag tezlikli geydetma sistemlerinin 6zil tezlik signalinin fazasini yiiksak dagqiglik ils (<0.3%) goymaga imkan veran 6zl
tezlik impulslarn formalasdirilan reqemli qurdu islenib hazirlanmis ve dizsldilmisdir.

Y.0. Kagxap, C.A. MycaeB, M.P. MeH3eJieeB
HU3KOYACTOTHBIN [IU®POBON ®OPMHUPOBATEJIb OIIOPHBIX UMITY.JIbCOB

Pa3paboTaHo ¥ U3roTOBICHO HU(PPOBOE YCTPOHCTBO Ui (JOPMHUPOBAHUS OMOPHBIX UMITYJILCOB, IO3BOJIIOIIEE € OOJBIION TOUHOCTHIO
(<0.3%) ycranaBnuBaTh (ha3y OMOPHOTO CUTHAJIA PETUCTPUPYIOMIUX CUCTEM C HU3KOYAaCTOTHOM MOIYJISIIUEH.
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ON THE COMMUTATOR CONSTRUCTION WITH THE APPLICATION OF DIODES ON
THE BASE OF COMPOUND SEMICONDUCTORS

G.A. ABBASOV, M.N. IBRAGIMOV, M.J. RADGABOV
Azerbaijan Architectural-Building University,
h.5, A.Sultanova, Baku, Azerbaijan

Peculiarities of the switching diode on the base of compound semiconductors are considered. The switching diode has such indices as
memory property, two stable states, it does not consume the energy from the feed supply. These properties allow applying the switching
diode as a switching element. The construction of the rectangular commutator with the application of the switching diode on the base of
compound semiconductors as the switching element is described. The process of connection installation between input and output tappings of

rectangular commutator is stated.

The development of the electron technique leads to the
wide use of quick-acting, small-sized, non-contact elements
in various spheres. Each sphere raises to electron elements its
specific claims.

One of the main spheres, where electron elements are
widely used, is the sphere of switching technique [1]. The
sphere of the switching technology raises to electron
elements such claims: they should have the memory property,
two stable states and should not consume the energy in stable
states [2]. Among electron elements, used in the switching
technology, the switching diode on the base of compound
semiconductors has the great interest [3, 4, 5].

The scheme of the switching diode on the base of the
semiconductors Cu,Se, which is worked out by researchers of
Institute of Physics of Azerbaijan AS, is represented on fig.1.

Fig 1. The scheme of the switching diode on the base of the
semiconductor Cu,Se.

The scheme of the switching diode contains: tappings (1,
2, 3) are input, the tapping (4) is output, element (5) is the
switching diode, element (6) is the resistive resistance,
element (7) is the rectifying diode. The switching diode
operates on the following principle.

The diode (5) switches in one of two stable states,
corresponding to the open state, at the positive signal receipt
on the input tapping (1).

The signal, corresponding to the informational signal, is
received on the output tapping (4) under the influence of the
small negative signal, received on the input tapping (2). In
the open state of the switching diode, the informational signal
on the exit may be received infinite number of times. The
negative signal is given on the end of information
transmission with the sufficiently high amplitude and the
switching diode (5) is locked. After this the switching diode
is ready for the opening and the new information
transmission.

Thus, it is good to use the switching diode on the base of
the semiconductor Cu,Se as the switching element. Let us

observe the construction of the rectangular commutator with
the use of switching diodes. The commutator scheme is given
on fig.2.

R (M)
a(rern

I

1

'

|

|:-T]R(r-' P‘J
.‘ A gv-rae2)

A=)

Ztn-rtee) TJ"’ ~t1+t) A Bieniz) a‘zr' -r+2)8
N o—

—
3(.«;‘-.«7.~:J Jw-r1e2)

Fig.2. The commutator scheme with the application of switching
diodes.

The commutator has the rectangular shape and contains:

input tappings (1,2...,N), output tappings (1,2...M),
switching diodes {1D,2D,....MD, (M+1)D,M+2)D,....;
(M+M)D,....(N-M+1)D,(N-M+2)D,....NMD}; tappings for

diodes switch in the open state (21,25,...2m,2m+1)2m+2)>- - -
2nmy)s tappings for diodes switch to
the closed state (317327--‘73M73M+173M+25‘"53M+M7"-73N—M+17'--7
3nMmi2--.3nm),  rectifying  diodes  [D1,D2,....DM,D(MH),
DMH2),.., DOIMHV) DIN-MH).DIN-M+2),...DNM]; limiting resisti-
ve resistance [R1R2,.. . RMRM+)RMH2)... RNHM)R(N-M+1),
R(N-M+2),...,RNM].

The commutator operates on the following principle. One
of 1D,2D,...,MD,(M+1)D,(M+2)D,...(M+M)D,...,(N-M+ 1)
D, (N-M+2)D,NMD switching diodes are led to the open
state for the connection installation between one of 1,2,.M

2 (et m)> 2 (N-m+1)>2 (N-M+2)s -+ - + o5



ON THE COMMUTATOR CONSTRUCTION WITH THE APPLICATION OF DIODES ON THE BASE OF COMPOUND SEMICONDUCTORS

entries and one of 1,...N exits. The positive signal on one of It is necessary to note, that in the commutator switching
21,205+ 22 (1) 22y - - - - - 52 (1) 2(Nomr 1> 2 (N 2)s - - « 52 (NM) diodes in two stable states (that is in open and closed states)
tappings is given to set the respective switching diode to the do not consume the energy from the feed source. This
open state. Information transmission between given entry and  peculiarity of the switching diode makes the commutator
required exit is provided after the opening of the respective  scheme profitable from the economical point of view.

switching diode. The closed state of the respective switching Let us consider the example of the connection installation
diode is provided on the end of information transmission between one of input and one output tappings.

between the given entry and required exit of the negative If, for example, it is required to connect the output (input)
signal with the sufficiently high amplitude, given on one of tapping (2) with the input (output) tapping (1), then the
31,32, e s 3V IME 15 3M 25« - s IMA M« « -5 IN-M1 - - - s IN-Mi+2- - - s INM switching diode 2D is led to the open state. The positive

tappings. The closed switching diode is again led to the open  signal is given on the tapping (2,) for this purpose. The
state by the positive signal for next information transmission.  informational signal from the input tapping (1) through the

Then signals, received on the exit of the switching diode  switching diode 2D and through the rectifying diode D2
through rectifying diodes, do not pass to the exit. The pulses transfers to the closed state on the signal, received from the
transmission from the given entry to the required exit only taping (3,), on the end of the informational signal
with such polarity, which corresponds to the polarity of transmission. After this the switching diode 2D is ready for
informational signals, is provided by means of rectifying the opening and the next informational signal transmission.

diodes DI1,D2,..,.DM,DM+)DM:2),... DIVEAM)DN-MH1), D(N-

MH2),...,.DNM.

[11 O.N. Ivanova. Electron switching-Issue “Communication”, on the base of compound semiconductors-Reports of
M.1971. republic conference of young physicists, 30 May, 1972.

[2] V.E. Benesh. Mathematical basis of the phone theory- [4] G.B. Abdullayev, Z.A. Aliyarova, G.A. Abbasov etc.
Translation from English; M.”Communication” issue, “The author certificate Ne 82581-Priority from 23
1968. January, 1972.

[3] G.A. Abbasov. The construction of logic and memory [5] G.B. Abdullayev, E.N. Zamanova, G.A. Abbasov, Z.A.
schemes with the application of new switching diodes Aliyarova. The semiconductive switch-The author

certificate Ne 664419-Priority from 7 December, 1979.
H.A. Abbasov, M.N. ibrahimov, M.Y. Racabov

MURSKKSB YARIMKEGIRICi DIODLARIN KOMMUTATORLARDA T9TBIQi

Maqalads murakksb yarimkegirici diodlar Gzerinde kommutator qurdgularinin yigilmasinin mamkinliyu gostarilmisdir. Cevirici
diodlar iki tarazliq vaziyystds olmagla yaddasa malikdirler. Ozii de bu veziyystds menbadan eneriji taleb etmirlar. Bu xiisusiyyst
hamin diodlardan yaddas elementi kimi istifade etmays imkan verir. Maqalada diizbucagll kommutator tasvir edilmisdir. Eyni
zamanda kommutatorun giris va ¢ixis sixaclari arasinda birlegsmanin yaradilma prinsipi izah edilmisdir.

I'.A. A66acoB, M.H. U6parumosn, M.51. Pax:ka6oB

O TIOCTPOEHNU KOMMYTATOPA C HCIIOJIb3OBAHUEM JMOJ0B HA OCHOBE CJIOKHbBIX
noJynnPOBOJHUKOB

PaccMaTpuBaroTCst 0OCOOCHHOCTH TIEPEKIIOYAIONIETo JM0/a Ha OCHOBE CIJIOXKHBIX ITOJTYIIPOBOIHHUKOB. [lepekitouaromuii 1uo obnangaer
TaKUMH I0Ka3aTelsIMH, KaK CBOMCTBO MAaMSTH, JBa YCTOHYMBBIX COCTOSIHHS, HENMOTPEOJICHHE SHEPIUH OT MCTOYHUKA MHUTAHMS U 1p. DTH
CBOMICTBa IIO3BOJISIOT HCIIOJNB30BaTh IIEPEKIIOYAIOMINIA HOJ B Ka4eCTBE KOMMYTAIMOHHOTO 3jieMeHTa. OIHCHIBACTCS HOCTPOCHUE
MPSMOYTOJIBHOrO KOMMYTAaTOpa C HCIHOJb30BAaHUEM IIEPEKIFOYAIONICIO JMO/a HA OCHOBE CIIOXKHBIX MOJIYIPOBOJHHKOB B KauecTBE
KOMMYTallHOHHOTO 3JICMCHTA.

N3naraercs npoLecc yCTaHOBJICHUS COSMHEHNH MEX 1y BXOAHBIMH M BHIXOAHBIMH BBIBOJIAMH IPIMOYTOJIEHOTO KOMMYTaTOpa.

Received: 08.07.2002
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ELECTRIC PROPERTIES OF AgFeS; IN THE AREA OF THE PHASE TRANSITION

S.A. ALIYEV, Z.S. GASANOV, SM. ABDULLAYEV
Institute of Physics, Azerbaijan National Academy of Sciences.
370143, Baku, H. Javid ave. 33.

The research of temperature dependences of the Hall coefficient R(T) and the electroconductivity o(T) of AgFeS, in the area of the phase
transition (PT) was carried out. Parameters of the phase transition, determining the spreading degree, were found. It was shown, that in

AgFeS; PT is of considerably eroded character.
INTRODUCTION

Solids, with a polymorphism property, have always been
under investigation. It is caused both by practical and
scientific interests, following from the polymorphism
property. It is known, that physical properties, such as: band
structure, electric, segneto-electric, heat, magnetic properties
also change at the polymorphous transformation.

Jump-shaped variations of physical properties of the
substance at PT are the base for the creation of different
transformers.

Reliable data about the value and the rule of the
investigated effect change in the area of PT, the temperature
range of the transition, the impurities influence on these
properties, the deflection from the steochiometry, electric and
magnetic fields, ionizing radiation and other effects are
necessary for the stable work of such devices.

The collection of such data allows to reveal ways of the
sensitivity increase, stabilization and phenomena control at
PT, to investigate rules of separate phases distribution and
gives the information for the interpretation of physical
properties, proceeding at PT. The interest to the PT research
has grown after the high-temperature super-conductors
discovery. One of actual tasks of the given tendency is the
matter of the separate phases coexistence in the transition
region, and the determination of PT parameters, determining
the spreading degree. Theoretical aspects of eroded phases
transition (EPT) are considered in [1, 2].

Experimental data are presented in [3-7]. In paper [7]
Ag,Te electric and heat properties in PT area are interpreted
in framework of the EPT theory. Parameters, determining the
spreading degree, were calculated, it was established, that in
Ag,Te structural PT’s have the eroded nature. Electric and
magnetic fields, impurities, the excess of Te (up to 0,75 %)
and Ag (up to 0,25 %) have not the essential influence on the
spreading degree. It was shown, that PT parameters,
calculated by data of heat and electric properties of the phase
transition are in agreement with data, obtained from
temperature dependences of the X-rays reflections intensities
[3,4] and may be applied for the determination of PT
parameters of first and second rows.

Triple compounds AgFeTe,, AgFeSe,, AgFeS, are
analogues to Ag,Te, Ag,Se and Ag,S. They have the
polymorphism property and at PT electric and heat properties
are changed by the jump. A number of works are devoted to
the research of kinetic phenomena and the electron dispersion
law in AgFeTe,, AgFeSe,, and AgFeS, [8-10]. However the
above-mentioned problems, connected with PT, are not
discussed in them. Therefore in the present paper the task is
to investigate the temperature dependence of the Hall

coefficient R(T) and the electroconductivity o(T) in AgFeS,
in the PT area, to determine PT parameters and to reveal the
spreading degree.

EXPERIMENTAL RESULTS AND THEIR DISCUSSION

It should be noted, that the experimental device, allowing
to conduct measurements to a high precision and great time
lag in the PT area in adiabatic and isothermal conditions, is
needed for the successful fulfillment of the above-mentioned
research. In paper [11] the cryostat construction, allowing to
conduct simultaneously complex research of electric,
galvanic and thermomagnetic, and also heat properties of the
solid body in the wide temperature range [2-400 K] is given.
Some changes in cryostat construction are made for such
research realization in the PT area. Particularly, the working
part of the cryostat (where the sample of the metal casing is
installed) is considerably removed from its soldered part. The
sample installation is conducted by more high-heat solder
than the casing is. The sample and the standard are soldered
on the additional support with the bad heat conduction
(testalite, covered by the copper) at the realization of the
differential thermal analysis (DTA). Hot and cold junctions
of differential thermocouples are soldered on the face edge of
the sample and the standard on the identical level. It allows to
remove the background signal of the thermocouple and to
record AT,(T) without noises and it provides the high
precision of the measurement of the released and absorbed
heat in the PT area.

DTA may be measured in isothermal and adiabatic
conditions. The heat source provides the constancy of the
heat velocity T(t) (beginning from 0,1; 0,2 ... K/min.)

Temperature dependences of the Hall coefficient R(T) and
electroconductivity o(T) of AgFeS, are presented on fig.1.

As it is seen the electroconductivity at PT by the jump
increases more than an order. It is much more, than it is in
AgFeTe, and AgFeSe,. Because of the strong electron gas
degeneration in AgFeS,, the Hall coefficient has a low value,
therefore it is difficult to fix its change in the PT area.

Such strong change of o(T) at PT gives perspectives to
create switching devices on its base. The problems of o and 3
phases coexistence are observed in theoretical papers [1,2].
Formulae, allowing to calculate PT parameters, determining
the PT spreading degree in the condensed system, according
to which the switching function L of another phase is
introduced, are presented in them. Without going into details
of the theory and application methods, we refer to paper [7],
where methods of the experimental data proceeding and
formulae, applied for this purpose, are described in details [3-
6]. The function L may be determined by the formula (3),
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where the constant o, characterizing the PT spreading degree,
which depends on the volume of possible phase functions,
energy and temperature, is included.

[ i i [ W TN

Fig. 1. Temperature dependences of Hall coefficient R(1) and
electroconductivity o (2) in AgFeS,.

Taking into consideration, that the switching function
characterizes the relative phase share in their coexistence
area, it may be introduced as a formula (4). The mass
distribution of each phase m, and mg is determined by the
experimental data of any temperature dependence in the PT
area.

ta iy

[

T

-4

Fig. 2. Temperature dependence of the phases distribution In,
My, Mgin AgFeS,

Then T, at which both phases masses are equal
quantitatively and constant ¢, are determined by the
dependence of In, m,, mg on T. Such dependence for AgFeS,,
obtained by «(T) data, is presented on fig.2.

The point of the straight line crossing (interaction) with
the T axis gives the value T,. The formula (5), from which it
follows, that the straight line slope (In, m,, mp) gives the
constant o value, follows from the comparison of formulae
(3) and (4). The temperature dependence L(T) is determined
by calculated values of T, and by the formula (3) and is
presented on fig.3. The temperature dependence of the
derivative L on T-dL/dT(T), calculated by formula (6), is
presented on this figure. The dependence dL/DT(T) expresses
the temperature variation of the temperature velocity of the
phase transformation a«>»f. Thus, it is obtained for AgFeS,,
To=443 K, a=0,28, at the temperature (T=T,) dL/dT=0,07.1t
follows from these data, that in AgFeS, and as well as in its
analogue, the structural phase transformation has strongly
spread nature, Identical data for AgFeTe, and AgFeSe, are
equal, respectively, To=420 K, =0,18, dL/dT=0,022.

-1
K

K =
1
Fig. 3. Temperature dependences of the switching function L(1)
and temperature velocity of PT dL/DT (2) in AgFeS,.

Comparing obtained data of Pt parameters we may
conclude, that electric properties vary more sharply in
AgFeS, at PT and the PT spreading is somewhat lesser, than
itis in AgFeTe, and AgFeSe.,.
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S.A. Sliyev, Z.S. Hasanov, S.M. Abdullayev

AgFeS, KRISTALININ FAZA KEGiDi OBLASTINDA ELEKTRIK XASSOLORI

AgFeS, kristalinin faza kegidi (FK) oblastinda Holl amsal R(T) ve elektrik kegiriciliyinin oT) temperatur asiliig tadqiq
edilmisdir. FK-nin yayillma daracesini miayyan edsen parametrlor tayin edilmis ve gosterilmisdir ki, kristalinda FK yiksak yayllma
deracesine malikdir.

C.A. Anues, 3.C. I'acanoB, C.M. AGay./i1aeB
SJEKTPHUECKUE CBOMCTBA AgFeS;, B OBJIACTH ®A30BOI'O IIEPEXO/IA (PIT)

IIpoBeseHO HCCIeI0BaHHE TeMIIepaTypHOU 3aBucuMocTr ko3 duuuenra Xomia R(T) u snekrponposogaoctu o(T) AgFeS, B obnactu
¢azoBoro nepexona (PII). Onpenenensl napamerpsl OII, ompenensromye crenens pa3metus. [lokazano, uro B AgFeS, ®I1 Hocut cunbHO
Pa3MBITBIN XapakTep.
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THE CALCULATION OF ADIABATIC COMPRESSIBILITY AND HEAT CAPACITY OF
PERFLUOROCARBONS FROM ACOUSTIC DATA

A.U. MAHMUDOYV, S.H. SADIKHOVA, E.Z. ALIYEV
Baku State University
Acad. Z. Khalilov str., 23, Baku

Using experimental data on the velocity of the ultrasound wave spreading, density, isothermal compressibility and heat expansion
coefficient we have calculated the adiabatic compressibility and the heat capacities C, and C, of some perfluorocarbons. The values of
adiabatic compressibility for various perfluorocarbons are qualitatively connected with their molecular structure. Values of heat capacities
difference C, -C, for investigated perfluorocarbons mainly depend on the heat expansion coefficient, since molecular interaction in them is

weak.

In our previous paper [1] the data on the bulk properties
of some perfluorocarbons were presented. Heat expansion
coefficient, isothermal compression and thermal coefficient
of the pressure versus the temperature were calculated on the
base of semiempiric state equation for perfluorocarbons. The
investigation of these dependencies research showed, that
above indicated coefficient depend both on the molar mass,
and on the perfluorocarbons structure.

In the present paper the adiabatic compressibility and heat
capacities C, and C, of perfluorocarbons are calculated on the
base of experimental data on the velocity of the ultrasound
wave spreading and on the density. Besides practical value
the actuality of the research of the heat physical and heat
properties of perfluorocarbons in the wide state parameters
range have exceptionally important scientific mean, allowing
to extend the modern imagination of the liquid state theory.
The velocity of the ultrasound wave spreading in investigated
perfluorocarbons was determined by the impulse method.
The method is based on the measurement of time interval,
during which the ultrasound wave, obtained by the short
rectangular electric impulse as a result of radiant
piezoelement excitation, passes twice the fixed distance
between strictly parallel placed radiant and receptor
piezoelements. The rectangular pulse recurrence frequency is
measured providing that the pulse, passing the investigated
substance once and the pulse, twice reflected from receptive
and radiant piezoelements coincidence. The sound velocity
subject the condition ad<< 7 is determined by the formula:

v =_2Lf

1. Perfluorobutylamine

CF;-CFy-CFo-CF5

-

N — CF;-CF,-CF>-CF3
™~

CFy-CFy-CFo-CF-

Molar mass
M[(C4Fy);N]=671 gr/mole

CF;

F:C.:

where « is a coefficient of the ultrasound wave absorption, 4
is an ultrasound wave length, L is a distance between
piezoelements, f* is a rectangular pulse recurrence frequency.

Measurements showed, that in  investigated
perfluorocarbons the velocity of the ultrasound wave
spreading is approximately two times smaller, than in
hydrocarbons. Obviously, it may be explained by the low
intermolecular interaction, promoting the increase of the
adiabatic compressibility and by the high density of
perfluorocarbons due to hard fluorine atoms presence in their
molecules.

The values of the relative temperature coefficient of the
sound velocity //v(A/JT), are approximately 1,2 times larger
in the investigated perfluorocarbons, than they are in
hydrocarbons. It is possibly explained by the fact, that the
critical temperature is low for perfluorocarbons, than for
hydrocarbons.

Measurements of the ultrasound wave spreading velocity
may be observed as a method of the adiabatic compressibility

B, determination:
2
Pew =1/pv’,

where p is a density and v is a velocity of the ultrasound
wave spreading. There are no other direct methods of the

yo) o value measurement, and the method precision is high, as

it is possible to measure the sound velocity and density to a
high precision degree. The structural formulae of investigated
perfluorocarbons are presented below:

2. Perfluororizononane

CFs

C - CF - (CFy): - CFs

CFs

M (CyF,0)=488 gr/mole.
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3. Perflfluoromethyldibutylamine 4. Perfluorotripropylamine
CF3-(CF3)3-N-(CF>)3-CF3 CFy-CF»-CT
N
CF- CF»-CF--CF5
CFo-CFo-CF3
M [CF@(C4F9)2N]:521 gr/mole M[(C3F7)3N]:521 gr/mole.
5.Perfluorodecaline 6.1.3 - perfluorodimethylcyclohexan
CF» - CF, ~— CF-CF;
~ ~
CF; CF CF2 = =
CFs CFs
| E | |
CF» CF CT CF; CF-CF;
CF; CF; CF;
M (CyFg)= 462 gr/mole M(CgF14)=400 gr/mole.

7.1 Perfluoroethyldecalizole
CF CF

CF, CF CF,
CF2 CF CF2
N - N g 7
CF,
CF;
M(C,,F,N)=545 gr/mole.
8. Perfluoro-2-methyl-pentane-3
CF+
CF-CF=CF-CF5
.,-o-"""'f
ZF

M(C¢F,,)= 300 gr/mole.
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THE CALCULATION OF ADIABATIC COMPRESSIBILITY AND HEAT CAPACITY OF PERFLUOROCARBONS FROM ACOUSTIC DATA
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Curves of adiabatic compressibility versus the
temperature of investigated perfluorocarbons at the pressure

0,1 MPa are presented on fig.1 and 2. As it is seen from
fig.1 and 2, the adiabatic compressibility of perfluorocarbons
increases with the temperature increase, it is explained by the
fact, that at the heating as a result of the heat expansion, the
liquid volume increases, the distance between molecules
grows, the repulsion force between molecules reduces and the
compression is facilitated.

The adiabatic compressibility of perfluoropropylamine
(curve 4) is lesser, than the adiabatic compressibility of
perfluorobutylamine (curve 1), it is explained by the fact, that
structure groups CF,, replacing the intermolecular interaction
to inner-molecular, reduce the compressibility, and
consequently, increase the sound velocity. These data
confirm the known empiric rules of Partkhasaratkhi and
Parshada [2], which indicate the qualitative connection of the
sound velocity, and consequently, the liquid compressibility
with details of the molecules structure.

Data on the adiabatic compressibility of perfluorodecaline
1.3-perfluoromethylcyclohexan and 1-
perfluoroethidecalozine (curves 5, 6, 7) may be analogously
explained. The high value of the adiabatic compressibility of

1-perfluoroethidecalozine in comparison with
perfluorodecaline is connected with the fact, that the latter
molecules have the compact structure (the spherical
symmetry of the atom groups location), side atom groups of
1- perfluoroethidecalozine molecules create more space
between molecules, and consequently its structure becomes
more porous in comparison with the perfluorodecaline
structure, it reflects on the value of the sound velocity, and
soon the adiabatic compressibility.

For perfluoroizononane and perfluoromethyldibutylamine
(curves 2 and 4), molecules structures, which are close,
values of the adiabatic compressibility differs negligibly.

The adiabatic compressibility of perfluoro2-methyl-
pentane-3 (curve 8) exceeds the value of adiabatic
compressibility of perfluoroisononane and
perfluorodibutylamine (curves 2 and 3), it may be explained
by the fact, that obviously, the number of CF, groups is more
at the latter molecule, it leads to the compressibility reduction
according to Partkhasaratkhi and Parshada rules. By using
data on the adiabatic compressibility and the heat expansion
coefficient of the investigated perfluorocarbons, presented in
papers [1, 2, 3], heat capacities C, and C, and their
differences were calculated. Calculation results, carried out at
the temperature T-293,15 K and the pressure P=0,1 MPa, are
presented in the following table:

Table
Perfluorocarbons | 1 2 3 4 5 6 7 8
Jbc
he- e
C, 669 | 874 868 | 1166 | 526 | 855 | 452 | 805
Cy 563 | 750 749 | 1028 | 403 | 674 | 399 | 663
C,-Cy 106 | 119 119 | 138 123 | 181 | 53 142
Perfluorocarbons names, presented in the same sequence, As the calculation error does not exceed 3%. The values
as their structural formulae, are indicated by numbers of C, C, - C, are determined from formulae
1,2,3,4,5,6,7.8. C B
The value C, is determined by the formula: Fp ﬁ—”3= u3pC2, whose calculation errors do not
v ag

a’T

C, =
PP (B /ﬂag -1)

()
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exceed 3%.
The modern experimental methods of C, determination
are cumbersome and are give errors not lesser 5-10%.
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Therefore, the C, calculation, following from the sound capacities difference depends on the heat expansion
velocity and other experimental data on the formula (1), is  coefficient and on the value of intermolecular interaction
considered as more convenient and profitable. forces, the value of C, - C, heat capacities difference for

As it is seen from the table data, the difference C,- C, for  investigated perfluorocarbons mainly depends on the heat
all investigated perfluorocarbons is higher, than it is for the  expansion coefficient, since the intermolecular interaction in
universal gas constant R. It is known, that C,- C, heat them is the weak by its nature.

[11 A.U. Mahmudov, S. Kh. Sadikhova, E.Z. Aliyev. Fizika, [3] M.P. Mustafayev, Y.M. Naziyev, M.K. Gakhramanov.

rizyaziyyat yer elmleri. “Teplofizika visokikh temperatur” v.33, Ne3, 1995,
[2] L. Bergman. “Ultrazvuk i ego primineniye v nauke i p-359-365 (in Russian).
tekhnike” 1A, 1965 (in Russian). [4] YM. Nazivev, M.P. Mustafayev, S.A. Javadova.

“Teplofizika visokikh temperatur”, v.32, Ne 3, 1993,
p.378-382 (in Russian).

A.U. Mahmudov, S.X. Sadixova, E.Z. Sliyev

PERFTORKARBONATLARDA AKUSTIK METODLA ADIABATIK SIXILMA SMSALININ V3 ISTILIK
TUTUMLARININ HESABLANMASI

Perftorkarbonatlarda sixligin, izotermik sixima amsalinin, istiden genislonma amsalinin ve ultrases daldalarinin yayima
sUratlorinin tecrubi giymaetlerine gére onlarin adiabatik sixilma smsallari ve C,, C, istilik tutumlar hesablanmigdir.

Adiabatik sixiima amsallarinin mixtslif perftorkarbonatlar iglin hesablanmis giymatleri onlarin molekulyar qurulusu ile
keyfiyyst cahstden slagslendirilmisdir. istilik tutumlan arasindaki ferq C, - C, asasen perftorkarbonatlarin istiden geniglonma
amsalindan asil oldugu gbésterilmisdir, ¢linki bu maddslerde molekullar arasi qarsiligh tasir cox azdir.

A.Y. Maxmynos, C.X. CagbixoBa, J.3. AnueB

BBIYMCJEHUE ATMABATHOM C’KUMAEMOCTH Y TEINIOEMKOCTH NEP®TOPYIJIEPOJIOB U3
AKYCTUYECKHUX JAHHBIX

Hcnonb3ysi IKCHEPUMEHTAJbHBIC JAHHBIC 110 CKOPOCTH PACHPOCTPAHEHUs YIBTPa3ByKOBBIX BOJH, IUIOTHOCTH, H30TEPMUYECKOM
CKUMAEMOCTH U KOO(Q(QULHMEHTY TEMIOBOrO PaclIMpPEHHs, PacCYUTaHbl aquadaTHas CKUMAeMOCTh M TemnoeMkocTH C, u C, HEKOTOPBIX
nepTopyraepoaoB. 3HaUeHHS anuabaTHYeCKOW CKUMAEMOCTH UIS PA3IMYHBIX NEpOTOPYTICPOAOB KAYECTBCHHO CBS3BIBAIOTCA C HX
MOJIEKYJIIPHBIM CTpOeHHEM. 3HaueHus pasHOCTH Temnoemkocteil C, - C, A7 UCCeI0BaHHBIX NEPYTOPYTIEPONOB B OCHOBHOM 3aBHCAT OT
K03 (PHUIHECHTA TEIIOBOTO PACIIUPEHHS, TIOCKOIBKY MEXMOJICKYJSIPHOE B3aMMOICHCTBIE B HUX BEChMa MaJIo.

Received: 14.10.02
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SOME PECULIARITIES OF THE CHARACTERISTICS OF CHAOTIC OSCILLATIONS OF
THE SOLAR CENTIMETER RADIO EMISSION

Sh. Sh. GUSEINOV
Shemakha Astrophysical Observatory of the Azerbaijan National Academy of Sciences
SHAO, Yu. Mammadaliyev settlement, Pirqulu, Shamaky, 373243, Azerbaijan Republic

Some peculiarities of the numerical analysis of chaotic fluctuations and their application to the analysis of the fluctuations of centimeter
wavelengths radio emission of the Sun are considered. On the basis of Takens algorithm on the one-dimensional realization of dynamic
system its phase portrait is constructed. Using the Grassberger-Procacci formula the correlation integral which allows determining the fractal
dimension of the attractor and the entropy of the dynamic system is calculated. For determination of the character of the system the results of
statistical processing of fluctuations of the solar radio emission are analyzed. From the results of fractal analysis it is shown that in the
temporary series of fluctuations of centimeter radio emission of the Sun the low dimensional determined chaos is present. Thus, the specified
calculations of the correlation dimension and K- entropy in the solar temporary series are possible at optimum - minimum length of the

sample >700.

Introduction

The problem of turbulence in hydrodynamics is common
for the plasma physics, the weather forecast, the theory of
planets and stars, radiophysics and many other sciences.

The new methods, which have been developed in last
two decades, allowed to reach a notable progress in the
consideration of laws of dissipative systems [1,5].

The theory of determined chaos has not been used yet in
analyses of nonlinear processes in atmosphere of the Sun. In
this paper we give brief description of the main points of the
applied methods of the determined chaos and the problems of
applications to the fluctuations of the centimeter radio
emission of the Sun.

1.The main characteristics of dynamic regimes

The dynamic regime can be analyzed by the method of
Fourier analysis. But this method does not allow to
discriminate between the determined chaos and the “white
noise”. Suppose that the dynamic regime is determined by the

set of functions x,(¢),i=1,2,..,N (for example, for the Sun

it is temporary sequence of the intensities of the radio
emission /y(2)).

The instant (¢=f#)) state of the system in the N-
dimensional phase space is defined by the point P with

coordinates x,(t,), x,(t,),...xy(t,) and the evolution of

the system is expressed by the phase trajectory. If there is
stable regime in the system the phase trajectories converge to
some subset of the phase space. This space is called an
attractor. In this respect an investigation of space trajectories
allow us to get only qualitative information about the system.

For the quantitative description of the attractor some
parameters are used. The most informative parameters are the
spectral power, the dimension, and the entropy.

The dimension and entropy are very useful parameters
when the system is in the strange attractor regime. Strange
attractor is the mathematical picture of the determined
chaotic oscillations. The strange attractors is the attracting
trajectories of the determined chaotic system in the phase
space.

The dimension D and Kolmogorov K— entropy are
important characteristics of the non-linear systems [3-6].
Fractal dimension is the quantitative characteristic of the set

of points in the n-dimensional space, which shows the density
of points filling the subspace when their number becomes
very large.

2. The Takens’s lag method and the Ruelle-Takens
model

For the complete and direct study of the motion, which
forms the foundation of dynamic systems, it is necessary to
construct its phase portrait. Takens [7] suggested an effective
method for the evaluation of geometrical characteristics of
the attractor and for restoring the trajectory in phase space by
time lags on the basis of measurements of one variable of the
dynamic system.

Thus, the one-dimensional temporary series of x,(f) allow
constructing the multi-dimensional phase space of dynamic
system.

Fig.1. 3-D phase portrait of fluctuations in solar atmosphere
within 10 hours.

In fig.1 three-dimensional 10-hour phase portrait of solar
atmosphere is shown. These temporary series consist of
At=0,5 min intervals. Observations of /(f) were carried out
on 26 August, 1984 at 1=3,6 cm at 22 m radio telescope of
RAS FJ RAN (Pushino). The complex nature of the phase
trajectory behaviour is seen which indicates its unstable
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nature of time evolution of the inhomogeneous structure of
the solar atmosphere.

So, it is very difficult to make some kind of derivations
on the behaviour of solar atmosphere on the basis of three-
dimensional graphs of the phase trajectory.

To date several methods for the description of transition
from the laminar regime of flow to the turbulent regime are
offered.

One of them is the model suggested by Ruelle and
Takens (1971) [8]. This model has for the first time cast
doubt on the Landau’s theory [9] of turbulence according to
which for an occurrence of turbulence infinite number of
Hopfs' bifurcations are required.

The approach of Ruelle and Takens is as follow. The
spectrum of power of the dynamic system will be developed
as function of regulating parameter as follows. The spectrum
of power will in the beginning contain one frequency (f}),
then two frequencies (f}, f;), sometimes three, arise. With the
arising in the spectrum of the third frequency the broadband
noise component, which is characteristic for chaos, will
appear.

As an example in fig. 2 (a,b,c) series of average spectra
of power density (averaged on 10 spectra) is shown. The data
on fluctuations are from the observations at the radio
telescope RT-64 of special design office of Moscow
Energetic Institute (OKB MEI) at wavelength 4=5.2 and
8.1cm carried out in 1983 and at RT- 22 in Pushino at 4=3.6
cm carried out in 1984. The technique of spectral processing
of these observational data is given in author’s work [10].
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Fig.2 (a,b,c) The average spectra of power dencity of
fluctuations of radio emission of the quiet Sun at
various radio telescopes.

From fig. 2 (a,b,c) it can be seen that in the fluctuations
of the centimeter radio emission of the Sun there is broad
spectrum of frequencies. This feature of chaos is especially
important when the system has small dimension.
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From the above it follows, that in such cases the
calculation of the dimension of the attractor and the entropy
of dynamic system allows to obtain valuable information

3. Determination of dimensionality and entropy from
the observational data

Last years for the determination of the dimension of the
attractor more effective methods have been developed.
Grassberger and Procaccia [11, 12] have in detail studied and
derived certain relation between the point-to-point
dimensionality and the correlation dimensionality [13].

In determination of the point-to-point dimensionality the
continuous trajectory is considered as the discrete one. Then
the distance between pairs of points are calculated as

Sl.j = ‘Scl. -X /.‘. The correlation function is determined as

1
C(r)= lim —5 (number of pairs (i,j), for which S;<r)
N->0 N

For many attractors this function depend on rat » — 0 as
. d
limC(r)=ar",
r—0

therefore the fractional dimensionality may be determined by
a slope of the line in the (InC, In ) diagram

d = lim 28 (")
r=0  logr

It is found that if the distance between any of two points
is less than the given value of r, then C() may be calculated
by a more effective ways, i.e.

Ctr)=-L3 St —x )= L3 M)

i=1 j=1 i=1

where H is the Heviside function: H(x)=1 if x>0, and (x)=0
when x<0.

The value of the correlation integral (3) may be
calculated in terms of d, beginning from d=2. Calculations
come to an end, if the estimations of the value C(r) display
the tendency to saturation and the change of correlation
dimensionality stops.

In the case of pure “white noise” for any value of d the
saturation of the correlation integral does not occur. This
property of the correlation integral is used to distinguish the
chaotic processes of dynamic origin from the white noise.

The Kolmogorov entropy is very important characteristic
of chaotic processes in a phase space of random
dimensionality. In practice the correlation entropy K3, which

is the low-value estimation of the K — entropy, KZSK, is
used. The correlation entropy and the correlation integral are
related by equation [11]

C(r)=r"exp(-dr K, ),

which makes it possible to determine K, with the help of the
calculated values of C(7) from:
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1 C,(r
o ll’l d ( )
2-m Cd +m (7")
The condition K>> 0 is the sufficient condition for an
existence of chaos. The entropy of K is the measure of chaos:

K= 0 - for the regular motion, K =00 - for the random
systems with determined chaos.

K,=

4. The analysis of factors which affect on precise
value of C(r)

It should be noted that the adequacy of conformity of the
correlation integral, calculated on the basis of experimental
data, with the real one depends on many factors.The most
important among them are the length of realization 7, i.e. the

log C(r)
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number of data N time delay 7 the intervals of readings Az,
and the presence of noise and trend in the temporary series.
The choice of these parameters is as in the work [14].

5. Determination of N, by the data on fluctuations
of centimeter radio emission of the Sun.

It is known that the solar atmosphere at centimeter
wavelength radio range is continuously observed only in the
limited time intervals. Therefore, the problem of
determination of N,; for solar atmosphere, which is
necessary for correct calculation of correlation integral, is
extremely important. Measurements of fluctuations of
centimeter radio emission of the Sun with A=0,5 min are
used to calculate the correlation integral (3). The most long-
term series which are consist of 800 — 1000 readings is used.
Each temporary series was broken on a few consecutive
enclosed each into other series for which the amount of data
gradually grew. The most short of them consists of 200
points.
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Fig.3 (a,b) The diagrams of correlation integrals of temporary series of filtered data on the fluctuations of the centimeter radio emission

of the quiet Sun.

In fig. 3, as an example, graphs of correlation integrals in
which numbers of points are increased from 200 to 1000 are
presented. In calculations d=4. At 200 and 300 on the graphs
evident breaks which do not permit to determine the
dimension of the attractor are seen. Although at N=400; 500;
600 extended domains of scaling appeared. At N=700; 800;
900 the values and slopes of curves do not actually differ, i.e.
the saturation of correlation integrals begins.

Thus, it is safe to say, that for the calculation of the real
value of the correlation integrals as a minimum about 700
measurements of the fluctuations of the centimeter radio
emission of the Sun are required.

Conclusions

Results derived in this work allow to make the following
conclusions
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1. With the aid of Takens's algorithm by one-
dimensional realization of dynamic system their
multidimensional phase portrait may be constructed.

2. The calculations of the Grossberger-Procaccia's correlation
integral by using the observational data allow to determine
the fractal dimension of the attractor and the entropy of the
dynamic system.

3. The spectrum of power density constructed by using long-
term observational material on the fluctuations of the
centimeter radio emission of the Sun shows a wide band of
frequencies, and the auto correlation function fades with
time.

4. In most cases fluctuations are non-stationary and their
amplitudes, phases and periods are varied with time.

5. The nonstationarity raises an internal chaos and increases
the entropy of the dynamic system. Therefore, the spectrum
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at the same time is determined and stochastic due to
nonlinearity of the system and the parameters.
1. The optimum minimum sample of the temporary series of

characteristics, for example, the Fourer spectrum, the indices
of Lyauponov, or the fractal dimensionality. In this case it is
save to say that the system is the chaotic or strange one.

measurements of fluctuations of the solar radio emission at
which the value of the correlation integral become stable
should be N~700 points.

2. The fractal dimensionality does not characterize a chaotic
nature of dynamic system. In dynamic experiments it is better
not to rely on any the only one criterion of chaos. For the
larger reliability it is necessary to use two, three and etc.
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$.S. Huseynov
XAOTIK ROQSLORIN XARAKTERISKALARININ B3’Zi XUSUSIYYSTLSRI

Baxilir xaotik ragslerin adadi tehlilinin ba'zi xisusiyystlerine ve onlarin santimetrlik dalda uzunluunda Giinas
radiostalanmasi fluktuasiyalarinin tehlilina tetbigine. Takensin alqoritmi asasinda dinamik sistemlerin birdlgilli qgiymatlarina
gbra, onun faza portreti qurulmusdur. Qrassberger — Prokaggia dusturu ile dinamik sistemlarin entropiyasini ve fraktal 6lgu
deracesini ta’yin etmaya imkan veren korelyasiya inteqrali hesablanmisdir. Sistemin ndvind ta’yin etmak Uglin bir negs
gostericiden, masalan Furye spektrindan ve fraktal 6l¢i daracasinden istifade edilmisdir. Korelyasiya ve spektr tahlil Gsullarinin —
maksimum entropiya tsulu (MEU) ve spektr-zaman tohlil Gisulunun (SZTU) kémayi ile Giines radiosiialanmasi fluktuasiyalarinin
statistik islanmasinin naticalari tohlil olunmusdur. Belslikle, Glinasin zaman siralarina goérae daqiqlasdiriimis korelyasiya 0lgu
daracasi va K- entropiyanin hesablanmasi, siranin minimum optimal uzunlugu N>700 oldugda mumkunddr.

1. 1. I'yceiinoB

HEKOTOPBIE OCOBEHHOCTH XAPAKTEPUCTHUK XAOTUYECKUX KOJIEBAHUM

PaccmarpuBaloTcss HEKOTOpbIE OCOOCHHOCTH YHCIICHHOTO aHaM3a XAaOTHYECKHX KojeOaHWH M INpPUMEHEHHWEe HUX Ui aHanm3a
¢urykryanmit paguonstydenust CoJHIIa B CAHTHMETPOBOM Juarna3oHe BoiH. Ha ocHoBe anroputMa TakeHca IO OJHOMEPHOH peann3aniu
JMHAMUYECKOW CHCTEMBI MOCTPOeH ee (a3oBhIii mopTpeT. Paccumran koppessuuoHHBI uHTerpan mo ¢opmyse I'paccoepra-IIpokaduna,
KOTOpPBI IO3BOJISIET OIpPEASNIUTh (PpaKkTaJbHYI0 Pa3MEpPHOCTb aTTPAKTOpa M JHTPOIMIO AWHAMHYECKOW cUCTeMBl. [IpoaHamn3upoBaHbI
pe3ynbTaThl CTATUCTUYECKOH 00paboTku ¢uykryanumii paauomsmydeHus ConHIa Ansd ompeneneHHs Buaa cucTemsl. Ilo pesympTatam
(pakTanbHOTO aHaNIN3a MOKA3aHO, YTO BO BPEMEHHBIX psAAaxX QIyKTyallud CAaHTUMETPOBOTO paauounsiydeHus ComnHIa NPUCYTCTBYIOT HU3KO-
pa3MepHbIil 1eTepMUHUPOBAaHHBIH Xaoc. Takum 00pa3oM, YTOYHEHHbIE BBHIYUCICHUS KOPPEIALMOHHON pasmepHocTH u K — sHTpomuu mo
COJIHEYHBIM BPEMEHHBIM PSAJIaM BO3MO>KHBI IIPH ONTUMAIbHO MUHUMAJBHOHN JUTHHE BEIOOpKH >700.

Received: 01.07.02

34



FiZIKA

2002

CILD VIII Ne 3

THE ENERGY SPECTRUM OF CHARGE CARRIERS IN n-Ag,Te

F.F. ALIEV
Institute of Physics of the Azerbaijan National Academy of Sciences
H. Javid av. 33, Baku, 370143

It is shown, that Ag atoms create small donors levels in Ag,Te, which are placed on the distance (7-10°T-K'-0.002) eV from the
conduction band bottom. It is established that the stoichiometric composition Ag,Te has the n-type conductivity beginning from the

deficiency of Ag > 0.01at %.

A number of works [1-5] were devoted to the
establishment of the energy spectrum of charge carriers in
Ag,Te. The authors [1] valued the width of the prohibited
band E,<6mel and supposed, that the slitless state takes
place in Ag,Te at low temperature. The behavior of Hall
coefficient R in the temperature interval 250-300 K is caused
by the increase of the efficient density of the valence band
state that is by the presence of the additional valence band
with the high density of states, placed below along the energy
axis. Conclusions made by authors [2] suggest, that silver
may be the two-electron donor in AQIBW, which gives two
electrons to the conduction band (Ag'—Ag**+2¢’); under this
condition the formed two-electron state is localized either
because of the strong interaction with the lattice or because of
the interaction with vacancies and other imperfections.
Moreover, according to their opinion, silver compounds,
unlike copper compounds, have always the electron type of
conductivity even at 7—0 also at the definite deficiency of
silver in comparison with the stoichiometry.

It has been noted in paper [5] that the excess of Te in
Ag,Te leads to r-type in the homogeneity region; and Ag to
the p-type conductivity. Authors [4] have valued the activation
energy (0.04£0.01)eV and have supposed that local energy
levels arise in the prohibited band. It is shown in work [5],
that peculiarities in temperature dependences of electric and
thermoelectric parameters of p-Ag,Te are connected with
acceptor levels, placed on the distance (0.03-7-10°T-K")eV
from the conduction band bottom.

In spite of numerous works [1-5], devoted to the
establishment of the energy spectrum of charge carriers in n-
Ag,Te this issue is still open. In this work the attempt has
been made to solve given issue, taking into account
conclusions [5].

Determination of some impurity state parameters

The temperature and concentration dependences of
coefficients: Hall R, electroconductivity o and thermoemf ¢
in n-Ag,Te (fig.1) are connected with the state of donor
impurities [2]. As it is known from [5], at the high value of
concentration of donors N, and at low value of E, [6] the
experimental determination of activation energy of the donor
E, for Ag,Te is very difficult. We may act in the following
way to determine E;.

Authors [7] have showed that the law of electron
dispersion in n- Ag,Te submits to the Kain model and
interaction of electrons has non-elastic character. Then the
thermoemf coefficient at any degree of electron gas
degeneration with the non-standard band is determined as [8]:

[04 :& Il{+1,2(:u*’ﬁ)_’u* (1)
e | I,,(1.B)

where pu*=p/KyT is the reduced chemical potential ; u and
L" (u* p) are the level and two-parametric Fermi integral.
Here =K, T/E, is the parameter, characterizing a band non-
standard.
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Fig.1. Temperature dependences of the Hall coefficient R (at

H=12 kD), electroconductivity o and thermoemf «,
(solid lines are calculated).

The value x was determined from the formula (1) at the
temperature 15 K. If values N, and m, (m, is the effective

mass of electrons on the Fermi level) are known, then E,; may
be found by means of inequality:

E d
exp >>
K,T

According to [8]:

(2m, K, T)"”
322N,
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3/2%3
E,=K,T ln{w} _

(2m KT )"

Using values N~=1.1-10"%cm>, m*,=0.022m, [5] at 15 K,
the value ~-0.1 meV (at the count from the conduction band
bottom) has been received for E,. If it is taken into account
that E,(T) [6] and E,T)=(7-10° T -K'-0.002) eV, then the
value £, equals ~2 meV at 7=0K.

In the case of a simple monovalence donor impurity, for
which only the spin-degeneration fS=1/2 is appropriated, the
electron concentration on donor levels with the energy E;=-E, is
determined according to [91]:

1 -1
n, sz{I+5exp[—(Ed +,u)/K0T]} )

There is some information in literature [10,11], that the
telluride of silver refers to compensated semiconductors. At
very low temperature (7—0), when the concentration may be
neglected of conductivity electrons n and holes p in the
valence band, the neutrality equation has the form [9]:

N[+ 2exp(~E - ) =N, [1+exp(E; - @

where u*= -(E,"+E,)/2, E,’=E/K,T, E;'=E, /K,T, N, is the
concentration of acceptors. Taking into account values E, [5]
and E; at T7—0, it has been received, that N,/N,~0.47, that is
the boundary type conductivity Ag,Te has been determined.
Then the main part plays the position of (K')(K'’=N,/N, is the
degree of compensation). Calculations have been made at

/ , ) E,
K'—0, 1~=0.99F ;and at K’'—>1 = —

21/3(]—K’)1/3

[12],

1/3
, P " 4 ¢’ .
where E, =¢e /yr;,, Ey=| —N, —, is the energy
3 X

of Coulomb interaction, y is the dielectric constant,

1/3
ir
ry = (—N dj is the average distance between donors

3

(fig. 2). The count has been made from the level of the
isolated impurities.
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Fig.2. Positions of the Fermi level with respect to the level of

the isolated impurities as the function of the
compensation degree K'.

/

Another the most important characteristic is the bond
energy U(r,), that is the energy necessary for an electron
transition from a donor level to the conduction band bottom.

Let us assume for calculation of U(r,), that electron is
moving in the potential field:

ur,) = -ez/;(ro , 5)

where r, is the distance from the electron till the impurity
center. The formula (5) justifies itself if the radius of the
impurity state is large in comparison with the lattice constant
a,.

Taking into account the little difference between values
r, and r,the value ~0.3 meV has been received for U(r,) at
Ny=1.1-10"%cm™.

Using formulas (1) and (3), temperature dependences
a,(T), R=1/na e and o=en,; U, (T) ( fig. 1) have been
calculated; U,(T) has been taken from (5).

The discussion of received data

Low values of E,, and U(r,) show, that atoms Ag in
Ag,Te create small donor levels. Even at T<<E,/K, ions
Ag" of the main lattice give electrons to the conduction band.
The ratio N,/N, ~ 0.47 corresponds to the situation, when the
deficiency of 0.01 at % Ag creates donor concentration N, =
6,2-10'¢ cm™ in the stoichiometric composition; the crystal
has the n-type conductivity. In this case the hole
concentration is more in several times than the electron
concentration and therefore the material should be considered
as holy. Then R would be negative. It is necessary to note that
Ag,Te o and R are determined almost completely by
electrons [13, 14] in its own conductivity field. These and
some other consequences follow from large ratio of electron
and hole mobility [5].

The received boundary values of N,/N; are in agreement
with data of authors [4]. They considered, that beginning
with  7=1.2:1.8-10'® cm™, the crystal has the n-type of
conductivity, that is caused by redundant ( with respect to the
stoichiometry) Ag atoms in interstice, and N, could be
decreased till N;< 4.2 -10'® cm™ at sample annealing in the
vacuum at 7,<7 (T, is the temperature of the phase
transition) at expense of the creation of Ag vacancies at
simultaneous reduction of an Ag content in interstices.

Let us consider now the question on the position of the
Fermi level in the impurity band at 7=0K (fig. 2). As it is
known [12], the compensation degree K’ gives the notion
about the value . In the case of Ag,Te at K'<0.47 almost all
donors have electrons and therefore, are found in the upper
part of the impurity band and they are slightly ionized. That
is why 4 is positive, that is the greater part of donors are
filled by electrons and only small their part is free and has the
positive charge. At K'>0,47 the value 4<0 that leads to the
start of the electron compensation with an excess of Te
caused by the deviation from the stoichiometry [11].

Special interest has following facts. Firstly the
degeneracy region shifts to more high temperatures (fig.1),
secondly the divergences takes place from p-Ag,Te [5], the
resonant scattering of electrons on donor impurities in n-
Ag,Te is not observed. According to the first fact, the
degeneracy region shifts to the conduction band with the rate
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dE/dT=7-10° eV-K' and enters to this band at the
temperature ~10 K. In this case the hybridization of donor
and band states occurs, which is the main reason of the
broadening () of the donor band in n-Ag,Te. Then in the
whole interval of temperatures all non-compensated donor
impurities N=N, -N, are ionized giving their electrons to the
conduction band. Therefore all kinetic effects have the
appearance characteristic for strongly doped narrow-slit
semiconductors (fig. 1).

For explanation of the second fact, it is necessary to
determine the full width 77, and the broadening of the band of
the donor level. The width I is determined as [16]:

(e)= L
P e (e B )+(T, /2]

(6)

where p; is the density of impurity states. At K'<<1 this value
is determined as [12].

pile)=— exp(—g—Z] ™)
’ YT 7o)

Where s=¢’ /y ry 7,=0.26 E;" (K')"”, N; is the impurity
concentration, creating the band, whose middle corresponds
to the energy E,.

Taking into account the value p;(¢) at N, =1,1-10"® cm’3, it
has been received from (7) and (6), that 7, =0.25 meV. The
given calculation has been made also for the width of the
band of the acceptor level I, in p-Ag,Te and I; = 0,003 meV
has been received.

The broadening of the band impurity level at the expense
of impurity —band transitions equals [17]:

r=nx, (®)

where h is the Plank constant, t is the average time of a
carrier in the impurity state with respect to the transition in
the band.

Proceeding from the principle of the detailed balance and
comparing frequencies of direct (band-impurity) and indirect
(impurity-band) transitions, it is possible to receive the
expression [17].

P/ T=pin, )

where p, is the density of band states and 7 is the average
time of a carrier in the band state with respect to the
transition in the impurity, where they are determined in [5]. If
p., 7 and p; are known, then ~8.1-10"'%s follows from )
and from (8) we have y=~1.3 meV.

On the second fact, we can note, that the condition
Ly*>>p* (where I,*=I'y/K,T) or y /I'y~1 [16] should be
satisfied for realization of a resonant scattering. In the case of
n-Ag,Te calculations show reverse, ie p*>>I'* and

Therefore the resonant scattering of electrons on donor
impurities in n-Ag,Te is not observed. So we may conclude
from above-mentioned interpretations and conclusions [5]
that Ag atoms in Ag,Te create small donor levels and Te
atoms create acceptor levels, placed on distances (0.002—
7-10° T,K™") and (0.030-7-10° T,K™") eV from the conduction
band bottom, accordingly, which completely control electric
and thermoelectric properties of Ag,Te in the given model.
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F.F. Sliyev

n-Ag,Te KRISTALINDA YUKDASIYICILARIN ENERJi SPEKTRI

Miisyyen olunmusdur ki, Ag atomlari Ag;Te kristalinda, kegirici zonanin dibinden (7-10°T-K'-0.002) eV mesafeds kigik donor
saviyyaleri yaradirlar. Tomiz nimunalarden Ag>0.01 at% baslayaraq butiin nimunaler 6zini n-tip kimi aparirlar. 9sas ve asqgar
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saviyyalerin hibridlegsmasi ve elaca de asqar saviyyasinin onun asas enina olan nisbati, yani »/7y~5.2 oldugu Uglin, n-Ag.Te
kristalinda cirlagsma oblastinin yuxari temperatura suriismasi va elektronlarin donor asqarlarindan rezonans sapilmasi misahida
olunmamisdir.

OD.D. Aituen
SHEPIETHUYECKHUI CIIEKTP HOCUTEJIEM 3APSJIA B n-Ag,Te

VYcranosneno, uro atombl Ag B Ag,Te co3maroT MejkHe JOHOPHBIE YPOBHH, DPAacIOJIOKEHHbIE OT [HA 30HBI IPOBOAMMOCTH Ha
paccrosiHun (7~10'5T~K'1—0.002) 3B. BrisiBieHo, uTo HaumHas ¢ Hepoctatka Ag>0.01at% B CTEXHOMETPUUECKOM COCTaBe TEILTypu cepebpa
HMEeeT N-THI NMPOBOAUMOCTH. [IoKa3aHO, YTO OTHOIICHUEYIIMPEHHS YPOBHS 3a CUET IMOPHIM3AIMU NIPUMECHBIX M 30HHBIX COCTOSHHUI ) K
TIOJTHON IIMpUHE TOJIOCH! /; oueHb Oomnbmas, T.e. /1 ;~5.2. braronaps nocnenaemMy B n-Ag,Te 001acTb BBIpOXKIEHHS CMeIaeTcs K Ooee
BBICOKMM TEMIIepaTypam, a Takke He HaOJII0aeTCsl pe30HAHCHOE PACCEsIHUE AIIEKTPOHOB HA JIOHOPHBIX IPHUMECSIX.
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ABSTRACT

This is an algebraic geometrical feeling of how to quantize a classical mechanical system (symplectic
manifold (M,w)) prequantized by U(1)-bundle (‘quantum phase’ L — M). Mathematically, it can
be considered as an attempt to explain the interaction between symplectic geometry of Lagrangian
cycles inside M and algebraic geometry of Abelian connections over M.
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8§1. What we mean as ‘the quantization’.

1.1. Classical mechanical system is presented by a smooth (maybe non compact) 2n-di-
mensional C*°-manifold M called a phase space and equipped with a closed 2-form w that

has to induce a skew symmetric isomorphism w : TM ——~ T*M. Then, each function

f € C*(M) produces the Hamiltonian vector field Hy o w™(df) and there is a Lie algebra

structure on C*°(M) given by the Poisson bracket {f, g} o w(Hy, Hy).
1.2. Dirac’s quantization concept supposes to construct an irreducible representation of
complex smooth functions on M by linear endomorphisms of some complex Hilbert space H:

C*(M,C) —2~ Endc(H)

such that Q(1) = Id, real functions go to the self adjoint operators, and the Dirac commutator
relations Q({f,9}) = [Q(f),RQ(g)]/ih hold. Unfortunately (or fortunately, maybe), this is
impossible by the Van Hove theorem. Mathematical attempts to budge this problem are
concentrated in enlarging a classical area and, simultaneously, relaxing some of the previous
‘quantization rules’. The ‘quantum mathematics’ looks today like a radioactive decay via
algebraic, analytic, and geometric emanations shown on fig. A.

0ens'\ty distrip Utio,
S

‘.\“\eg\'a\ Operators
" @ » <tructures
&069\\

Fig. A. ‘Quantum decay of mathematics’.
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Geometrically, most of the modified quantization rules aim at a choice of a suitable function
class that can be quantized in a consistent fashion. This choice is nothing but a choice of
some auxiliary structure on the manifold.

1.3. Geometrical prequantization equipment of a classical mechanical system (M,w)
consists of a complex Hermitian line bundle! L —— M and a Hermitian connection a on L

such that the curvature form F, & Ja satisfies the following compatibility condition
F,=p'w (1-1)

where P —2~ M is the principal U(1)-bundle tautologically associated with L (i. e. the bundle
of unit circles in the fibers of L).

1.3.1. Remark. We always consider the connection @ as a real U(1)-invariant 1-form on P.
In terms of this form, ‘the vertical projection’ TP —— u(1) = iR is given by v — 2mi ag(v)
and ‘the horizontal hyperplanes’ in TP, are the kernels of a.

1.3.2. Remark. Prequantization equipment exists iff the cohomology class of w is integer:

[w] € H*(M,Z) ¢ H*(M,R).

In this case the compatibility condition (1-1) implies that [w] = ¢;(L) and a presents a contact
structure on P, that is the top form

a A (da)" = a A (p*w)™" (1-2)

nowhere vanishes and produces a volume element on P.

1.3.3. Remark. Usually, L, P are included in a series of bundles L&, P,, where P, —~ M
is the principal U(1)-bundle tautologically associated with the line bundle L®*. The number
1/k plays here the ‘Planck constant’ role: we go to the ‘quasiclassical limit’ as kK — oo. The
Hermitean connection @ on L induces the Hermitian connections a; on L®* with curvature
kp*w.

1.4. Geometric quantization takes the Hilbert space H being the space of smooth sections
C*(M, L) and lets f € C*°(M) act on I'°(M, L) as:

& Vi, +f 18 = Vg (s)+ fs (1-3)

Q(f)
where Vp, is a covariant derivative along the Hamiltonian vector field Hy induced by the
connection a.

1.4.1. LEMMA. The operators Q( f) satisfy all the Dirac conditions except for irreducibility.
L]

Unfortunately, the space H is ‘two times larger’ than it should be. Geometrically speaking,
to take just ‘a half of ['*°(M, L)’ we have to fix some polarization on M.

1.5. Polarization of M is a choice of complex n-dimensional tangent planes distribution
T' ¢ TM ® C closed w.r.t. the Lie brackets of vector fields. It allows to reduce H to a
subspace of polarized sections H' C I'°(M, L), which a covariantly constant along all the
vector fields from T".

lits sections are the ‘quantum states’ and the Hermitian structure allows to define their probabilities
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Typically, this gives the irreducibility of the geometric quantization procedure but leads to
an other problem: only a function f € C*°(M) whose Hamiltonian field H; preserves 7' may
be represented as an operator on A’ via (1-3). This kills a lot of interesting Hamiltonians.

1.6. Basic example: Kahler polarization. Let M be equipped with an integrable complex
structure I compatible with w in the sense that M; is a complex Kéahler manifold with
the Kéhler form w. Then, the antiholomorphic tangent subbundle 77 € TM ® C gives a
polarization on M called the Kahler polarization. In this case, L turns to a holomorphic
positive line bundle on M; (with the G-operator induced by the Hermitian connection a) and
the space of polarized sections turns to the space of global holomorphic sections H°(My, L).
Certainly, only the holomorphic Hamiltonians may be quantized via this approach.

1.6.1. Wave functions and states. The space
def 770 ®k
Hy = H (M, L®Y)

is called a wave function space of level k. Its projectivization PH;, is called a space of states.
‘H; is a Hilbert space w.r.t. scalar product

£
(31,32)kd=e/(31,32),;®kw/\"
M

where (%, *),er is the Hermitian form on L®F.
For k£ > 0 there is the canonical holomorphic projective embedding

z—Ann(x)

o+ My "2~ PHO(M;, L&) (1-4)

The Hermitian structure on L®* gives an antiholomorphic isomorphism

* ~

HO(MI,L®k) =~ HO(MI,L®k)
whose composition with the above projective map gives an antiholomorphic embedding of M;
into the space of states. The states sitting in its image are called coherent.

1.6.2. The Hardy space. A subbundle of unit balls D C L* is a strictly pseudoconvex
domain with the boundary P*. Hence, the space of holomorphic functions on D is a closed
subspace in the Hilbert space L?(P) (w.r.t. the volume element induced by the contact form
a*). This subspace is called the Hardy space. It comes with the natural U(1)-action, i.e.
admits the orthogonal weight decomposition.

1.6.3. LEMMA. The Hardy space component of weight k coincides with the space H; =
H°(M;, L®%), of level k wave functions, and Hermitian structure induced on H}, from L*(P*)
coincides with the initial Hermitian structure on Hy. O

So, the Hardy space is nothing but @’Hk
k

I

1.7. Toeplitz operators. Write L*(P*) ‘H;, for the canonical orthogonal projector
(called the k-th Szegé projector) and let f € C*°(M). Each o € H(My, L®%) c L*(P*) can
be multiplied by p*,f in L?(P*) and then sent back to H°(M;, L&) by II;. The resulting

map

YTk (p2, f9)

T H°(M;, L®F) H°(M;, L®)
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is called k-th Toeplitz operator of f.

1.8. Berezin — Toeplitz approach takes f € C™°(M) to the operator T}k) € Endc (Hy)
instead of the differential operator (1-3) used in the standard geometric quantization method.
This representation

(k)
C*(M) — End¢ (Hy)

satisfies all the Dirac quantization principles except for the commutator relation:
(k)
ih T # [ ] .

1.8.1. LEMMA. Although for each level k it does preserve neither Lie nor associative algebra
structures the discrepancy has ‘good quasi-classical behavior’:

HmT{f,g} [ Tt ,T;“]H ~ O(1/k)
as k — oo. O

1.8.2. Observation. Although an output of the Berezin quantization (wave function
spaces, e.t.c.) a priori depends on the choice of a polarized complex structure I on M,
in several examples (elliptic curves, say) the moduli space of the polarized complex structures
on M admits a flat projective bundle with fibers P ( H°(M;, L®*)).

1.9. Projective geometrical version of the Dirac’s quantization concept! deals with the
Kéhler manifold CP,, = P() instead of the vector space . It comes with complex structure,
Riemannian metric G, and compatible symplectic structure {2 (last two are real and imaginary
parts of the canonical Fubini - Studi metric on P(#)). Each self adjoint linear operator

# —+ 7 induces the expected value function A € O (P(#)) by the rule
A(w) = (v, Av)

where v € # is normalized by (v, v) = 1. A function A € C®(P(#)) comes by this way
iff its Hamiltonian flow w.r.t. the symplectic structure {2 preserves the Riemannian metric
G. Moreover, the correspondence A — A is the Lie algebra homomorphism, i.e. sends the
commutator of linear operators to the Poisson bracket of smooth functions w.r.t. to €2. So,
the Dirac postulates for the quantization of some classical mechanical model (M, w) mean
nothing but the existence of an irreducible Poisson algebra representation

C*(M) — C*(P(#))

1.10. The main idea of ALAG is to replace the ‘linear’ space P(#), which is the simplest
possible algebraic variety, by more general ‘non linear’ algebraic variety B whose geometry
encodes ‘the quantization’ of M. Namely, we show that any real analytic variety M equipped
with smooth symplectic form and compatible smooth prequantization data (L,a) (note that
all these data lives in ‘smooth real geometry’) leads canonically to some (infinite dimensional)
complex Kéhler manifold B = B(M,w, L,a) equipped an integrable complex structure, Rie-
mannian metric G, compatible symplectic structure €2, and holomorphic prequantization data

Yor detailed review see: A. Ashtekar, T. A. Schilling. Geometrical Formulation of Quantum Mechanics.
Prep. arXiv: gr-qc/9706069
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L —— B, A (which also can be quantized in its turn) together with the natural Poisson
algebra homomorphism (dynamical correspondence) C*°(M) —— C*(B) which allows to
translate classical Hamiltonian dynamics on M to its quantized version? on B.

Practically, we will construct some universal Kahler structure on the space of appropriate
Lagrangian cycles on M. Its projective geometrical properties encode the geometry of any
particular quantization construction, for example, the Berezin - Toeplitz one. So, this is the

first step to develop the true ‘geometry of quantization’, the whole of which is waited looking
like

C,eome“y That We Need

Fig. B. The Geometrical World.

2Note that the projective geometrical reformulation of the Dirac quantization principle sends Schrédinger
equation on H to Hamiltonian equations on B
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§2.Lagrangian and Abelian preliminaries for ALAG.

2.1. Space of Lagrangian cycles. We fix a smooth (maybe non-compact) 2n-dimensional
symplectic C*°-manifold M, a smooth compact oriented n-dimensional C*°-manifold S, and

some smooth homotopy class
Map, , (S , M )

of maps S ——~ M such that ¢*(w) = 0 (such the maps are called Lagrangian). The orbit
space

£ = Map,, (S, M)/Diffy(S)

is called the space of Lagrangian cycles (of fixed topological type).
2.1.1. Crucial property of Lagrangian cycles. If ¢ is a smooth immersion, i. e. there
is an inclusion of tangent bundles T'S —— ¢*(T'M), a Lagrangian cycle S e M is called

smoothly immersed. In this case the normal bundle N,,,s ~ ¢*(T'M)/T'S is naturally identified
with the cotangent bundle

T*S ~ * (T*M ) /Ann (TS) = ¢*(TM)/TS

2.1.2. Main ‘local’ example: let M = T*S be a cotangent bundle over any smooth
manifold S with the canonical projection M ——~ S. The 1-form 5 € C*°(M, T*M) sending
w € TionT*S (with z € S, a € T;S) to n(w) o p*a(w) is called an action form. Its
differential w & dn gives a symplectic structure on M (called canonical).

In local coordinates (pi,pa,...,Pn, q1,42,--.,Gn ), Wwhere ¢; coordinate the base S and p;
are linear coordinates along dg; in the fibers,

n(p,q) =Y _pidg;, w(p,q) = dp;Adg; .

A section S <>~ M, i. e. a graph of 1-form o, = s*(5) € C*°(S,T*S), is Lagrangian iff c,
is closed, because of 0 = s*(w) = s*(dn) = ds*(n) = das,. So, small deformations of S as a
Lagrangian cycle in TS presented by the zero section S —— 7™5 may be identified with a
small neighborhood of zero in the space Z, (S, R), of smooth real closed 1-forms on S.

2.2. The tangent space T(s, )£ at a smoothly immersed Lagrangian cycle (S, ¢) is naturally
identified with Z] (S, R). Indeed, T(s )£ consists of w-preserving local normal vector fields
near S on M modulo the fields tangent to S. We send such a vector field v to a 1-form
a = ¢*(i,w) € C(S,T*S). It is closed, because of

da = do* (iyw) = ¢*(diyw) = P*(Lyw + tydw) = " (Lyw) = 0.

2.3.The Darboux - Weinstein uniformization. Any smooth Lagrangian immersion

S <+ M can be extended to a smooth immersion U <Y M of some tube neighbor-
hood U C T*S around the zero section in such a way that @*w = dn turns to the canonical
symplectic form on 7*5. This continuation induces a smooth map from some neighborhood
of zero in Z} (S, R) to £: a small enough closed 1-form goes to the $-image of its graph. The
image of this map contains an open (in suitable topology) neighborhood of S in £.
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2.4. A complex Hermitian line bundle L —— X on a C*-manifold X has a form L =
P xyquy C, where P is the bundle of unit circles in L (called a principal U(1)-bundle of L).
Topologically, L is uniquely defined by its first Chern class

e (L) € HY(X,C®(X,C")) ~ HY(X, Z)

formed by its transition functions.

2.4.1. A Hermitian connection on P is a 1-form a on P such that Lie,a = 0 and a(u) =
1 for the standard U(1)-invariant ‘vertical’ vector field u dual to the 1-form u* such that

/ u* = 1. The kernel hyperplanes of « in T'P are called horizontal.
U(1)

2.4.2. Covariant derivation w.r. t. a is a differential operator C* (X, L) Yo, oo (X, T*X®
L) sending a local unitary section o over U C X to V,0 = 2mia, ® 0, where o, = ¢*a is
called a local connection 1-form of a. An arbitrary local section fo is then differentiated as

Volfo) = (df +27i fa,) Q0 .

An unitary base change (gauge transform), which acts as 0 — ¢’ = ho with h € C*°(U, U(1)),
takes

Qg > Qyr = Qg — %h_ldh.

Similarly, a covariantly constant (or horisontal) local sections fo have to satisfy the logarith-
mic differential equation 277 f~'df = a,. The differentials do,, of local connection forms, do
not depend on a choice of local unitary bases ¢ and can be glued into a global closed 2-form
w, € C*°(X,A?T*X) called a curvature of a. Its cohomology class [w,] € H*(X,R) is integer
and coincides with ¢;(L) € H*(X,Z) C H*(X,R).

In terms of covariant derivative, the ‘double differentiation’

(X, L) Yo C®(X,A2T*X ® L)

(which is induced by V, via Leibnitz rule) is a C*°(X)-linear operator taking s — 2miw, ®s.

In terms of the principal U(1)-bundle P ——~ X, we have p*w, = da and this 2-form sends a
pair of U(1)-invariant vector fields vy, va on P to

da(vy,ve) = (ﬁiema —d (a(vl))) (ve) = Liey a(v2) = —a([v, va]) -

2.5. Flat Hermitian connections are defined by the condition w, = 0. If it holds, L admits

a global never vanishing unitary (usually, non horizontal) section X < . L. Horizontal
sections fo exist only locally over simply connected open sets and are given by f = ce 2™
with an arbitrary constant ¢ € C and any smooth local function ¢ such that dg = «,.

Gauge equivalence classes of flat Hermitian connections are in 1-1 correspondence with
unitary characters

m(X) == U(1),
of the fundamental group of X. A character x, corresponding to a connection a presents the

holonomy (or the periods) of a, i. e. it sends a loop v € m(X) to a fiber shift under the
horizontal transport along ~.
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Considering the unitary characters as cohomology classes in
HY(X,U(1))~H'Y(X,R)/H"(X,Z),

we parameterize the gauge classes of the flat Hermitian connections on L by the points of real

torus Jx & HY(X,R)/H'(X,Z) called a Jacobian of X.

§3.Basic ALAG notions.

Let as fix some geometric prequantization data! (M,w, L,a) and write P, —=— M for the
principal U(1)-bundles associated with L®* and write a; for their Hermitian connections
induced by @ = a1). For any k the curvature day = kw and ay provides P, with a contact
structure whose volume element equals ay A (doy)™™ = k™ag, A (prw)™.

3.1. Bohr - Sommerfeld cycles. For any Lagrangian cycle S —— M a pull back ¢*L® is a
topologically trivial Hermitian line bundle on S equipped with the flat Hermitian connection
@*ay, because its curvature wy-,, = k¢*(w) = 0. A Lagrangian cycle (S, ¢) is called Bohr
- Sommerfeld of level k (or a BSy-cycle for shortness), if ¢*L®" admits a global horizontal
section over S. The Bohr - Sommerfeld cycles of level £ form a subvariety By C £. For any

. . . Br,
integer k, m there are natural inclusions By ——"— By.

3.2. Planckian cycles. Let Map, (S, P) be the space of smooth maps S L. Py, such that
©* () = 0 (such the maps are called Legendrian). The orbit space

Pk d:ef Ma‘pLE(S7 Pk)/Dlﬂb(S)

is called a space of level k Planckian cycles. For each Planckian cycle S 7. P, the com-
position ¢ : S 22°% M is Lagrangian, because of ¢*w = d@*ay, /k = 0. So, a Planckian cycle
(S, ) is nothing but a global horizontal unitary section of * L%* over the Bohr - Sommerfeld
cycle (S, p).

3.2.1. Berry bundles. There are principal U(1)-bundle P, —— B;, and corresponding
Hermitian line bundle £, — By, called Berry bundles (of level k). Taking m-th fiberwise

Hm, k

power of a horizontal unitary section, we get degree m covering Py, 5 Pmk- 1D terms

of the line bundles, this means that g ,, Ly, = L2™ under the inclusions By o Prm | Bk

3.3.Example: the Legendrian knots in S3. Let us take the Riemannian sphere S? =
P(C?) as M and the line bundle O(1), of homogeneous degree 1 forms, as L. The corresponding
principal U(1)-bundle P may be identified with the unit sphere S® C C? fibered over P(C?) via
Hopf. The standard Hermitian connection on P is obtained by restricting the U(2)-invariant
1-form

oria L (8 — 8)log|z|

lrecall that M is 2n-dimensional C*°-manifold equipped with a symplectic form w, Hermitian line bundle
L —— M, and Hermitian connection ¢ whose curvature w, = da coincides with pfw
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on C\ {0}. TIts curvature da = %35 log |z| provides P; with the standard symplectic

structure w such that p*w = da. Taking S = S' as Lagrangian cycles source, we get any
smooth immersion S' —— 52 being Lagrangian. The period of aj along + is

?{akzk//wzﬁAv,
g g 2

where A, is an oriented area bounded by v(S) C S?. The Bohr - Sommerfeld conditions
mean that it is integer multiple of 2. So, the Planckian cycles are the Legendrian knots in
S3 laying over unicursal curves cutting a rational part of the whole sphere area.

3.4. Infinitesimal description of By and Pi. A tangent vector to Py at (.S, §) is a section
ve C°(S, g (TP)/TS)

such that Lie,o = 0. Write its vertical component (w.r.t. o) as fu, where f = o4(v) €
C*°(S) and u is the standard vertical field (as above). Let us identify the subspace of horizontal
sections in C*(S, T P;,) with C*(S, ¢*T M) via dpg. Then the horizontal component v — fu,
of v, contracted with day and any horizontal w is

dog(v — fu,w) = dag(v,w) = [ﬁiev(ak) — d(ak(v))] (w) = —=df (w) .

Hence, the both vertical and horizontal components of v are uniquely defined by f € C*(S)
and infinitesimal deformations preserving the Bohr - Sommerfeld conditions go along the

subspace
B]%R(S7 R) C Z]%R(S7 R) = T(S#P)S :
Roughly speaking, each f € C*°(S) deforms (S, &) by moving the underlying Bohr - Sommer-
feld cycle to the graph of df in T*S and simultaneous gauging the global horizontal section
a by e—2km’ f .
3.4.1. LEMMA. Tangent space 1{s,,) By to BSy-cycles space at a smoothly immersed cycle
S < ¥+ M is naturally identified with the space of exact 1-forms BJ,(S). Under this identi-

fication, the differential of the inclusion B;, SN B, acts as the scalar multiplication by

m. O

3.4.2. LEMMA. Tangent space 15, Py at a smoothly embedded Planckian cycle S <?. P
is naturally identified with C*°(S). Under this identification, the differential of the covering

Lo,k
P —

.k Pmk acts on C°(S) as the scalar multiplication by m. O

3.4.3. COROLLARY. The identification above takes the differential of the Berry bundle
Py, —— By, to the external differentiation C*°(S,R) . B..(S,R). O

3.5. Darboux - Weinstein uniformization. Let S <% Py be a Planckian cycle laying

over a smoothly immersed Bohr - Sommerfeld cycle S <“— M. Then P} is smooth near (S, 3)
and is locally modelled by some neighborhood of zero in C*°(S,R). Similarly, By, is modelled
near (S, ¢) by a neighborhood of zero in B}, (S, R).

3.5.1. Sketch of proof. Let us continue (via Darboux - Weinstein) our Bohr - Sommerfeld
cycle to a symplectic immersion U <%~ M, where U C T*S is some neighborhood of the
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zero section. The Hermitian line bundle $*L®* admits (perhaps, over smaller U) an unitary

section U <2~ $*L® which coincides with our Planckian cycle over the zero section S C U
and such that the covariant differentiation w.r.t. the connection a; is given in the base o
by the canonical action form 5 on T*S, i. e. V,0 = 27in ® o over U. By the definition, the
DW-coordinatization of Pj by some neighborhood of zero in C*°(S,R) sends a small enough
function f to a BSi-cycle I'y C U, which is the graph of df, equipped with the global unitary
horizontal section e~/ - o|r,.

3.6. Complex structure on T'P;. The tangent bundle TP, admits a natural integrable
complex structure. Namely, complez DW-coordinatization of TP near a pair

S ;@» Pk , g€ COO(S, R) = ﬂs,g)Pk

takes a small enough ¢ = ¢ +ithy € C°(S, C) and treats its real part 1); as a linear coordinate
along the fiber of the tangent bundle and the imaginary part ¢ — as the DW-coordinate on
Py So, in terms of splitting T, ) (TP ) = TP, @ TP, = C°(S,R) @ C(S,R) coming from
the (real) DW-coordinatization of Py, the multiplication by i on sends (91, ¥2) — (12, —t)1),
i.e. coincides with the usual complex structure on C*°(S,C). In the next section we will
combine this complex structure with the canonical symplectic structure on 7*Pj in order to
get an integrable Kahler structure on a suitable vector bundle over Py.

§4. Kahler structure on the spaces of half weighted cycles.

4.1. Measures. The equivalence A ~ p of two measures A, u on S means that A(B) =0 &
p(B) = 0 for any Borel subset B C S. By the Radon - Nikodym theorem, A ~ y iff there are
two real integrable positive functions
dp 1 dA 1
=—€eL (S =—e€eL(S
Ou d\ ( y ) ) Oxp d,u ( 7”)

(called the Radon - Nikodym derivatives) such that

[an=[ontr. [ ar=[ ondn
B B B B

for any Borel subset B C 5. One writes usually A = gy, for two equivalent measures.
We will write 90t = 90t(.5) for the equivalence class of measures on S induced by its manifold
structure and 9y C M for smooth measures, whose pairwise Radon - Nikodym derivatives

are smooth. Certainly, o,a0a = 0uc and gur05, = 1 almost everywhere w.r.t. any measure
from 9N for all A\, p,( € M.

4.2. Half weighings. Consider the following equivalence of pairs (f,u), where p € 9,

f e L&(S,p): put (fi,m) ~ (fo, o) iff fir/0ur = f24/0un almost everywhere w.r.t. any
A € M. The corresponding equivalence classes usually are referred as half weights and denoted
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as ¥ = fy/p1. A half weight f./u is called smooth, if f € C*°(S) and p € 9. The half weights
form the real closed vector space' $(S) equipped with the scalar product

<f1 Hi, f2\/,172> &f /Sf1f2 \/@m@md/\

Smooth half weights form there a dense subspace 9 (S) C H(S).
4.3. Half-weighted cycles. Diff,(S) acts on $(S) via (f, 1) —— (foh™,(R™') 1) and

sends §) to itself. The orbit spaces of the corresponding diagonal actions:

2 < Map, (S, M) x $(S)/Diffy(S)

are called spaces of half weighted Lagrangian and Plancklan cycles of level k. Replace ©
by 55 in these definitions, we obtain the dense subspaces 2 hw c ghw and 73 bw c Prv. of

smoothly half weighted cycles. The forgetful maps £b . £, Phw . P (and their
smooth versions) provide these spaces with the vector bundle structures. All these bundles
are arranged in the commutative diagram:

P]EZIW B;Clw C Shw

| e 7
T

P B £.

4.4. Complex structure. For any fixed half weight f y/u the tangent space TgP;, = C°(S) is
included into T ;$ ~ H by fi — ffi \/;, This gives an inclusion TPy, —— PI¥ as a dense

set. Restricting ourselves by the smooth half weights, we get the identification TPk — 703};‘”
To push down the canonical 1ntegrable complex structure from TP, To 73 V. consider a
smooth Planckian cycle S <Y~ P laying over a BSj-cycle S <2~ M and half weighted by
¢ = f4/p. Using a local splitting Ti; 4 P bW o~ Ty % (S) ® T; P bW~ C®(S) @ C>(5)

we coordinate a small neighborhood of (g, ) in 703 i by smooth complex valued functions
=1 +iYy € C(S,C) as follows. The imaginary part ¢, produces some Planckian cycle
supported by I'y, C U C T*S and having the DW-coordinate 1». The real part 1, provides

it with the half weight
prd = (pro f) - \/pr*u,

where T'y, —~— S is the restriction of the canonical projection T*S — .

4.5. Kahler structure. The product of two half weights ¥, = f14/11 and Y9 = foq/po is a

complete weight on S, that is
def /
191192 = flf? Ou1 Ouax A ’

!linear combinations of half weights are defined as ¢1- f1 1/ p1+t2-f2 1/ B2 def (t1 firfeurttafoy/ou A) VA

where A in the both formulas is an arbitrary measure from 9t
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does not depend on the choice of A € 99t and produces a well defined integration

[ /S F o, & /S £ Fufor] 2 gun A

for f € C*(S). So, each half weight ¥ produces a linear form

x(¥) : fr— /Sfdﬁ2

on the tangent space TgPj, = C*°(S). In other words, $(S) double covers T( Py, because
» is quadratic in ¢. The differential of this quadratic covering sends ¥; € $H(S) to the linear
form

doey (V1) f|—>2/fd19191.
S

on C%(S) = T5P. So, dse identifies T(Pp) with T(T*Py) an may be used to pull back the
canonical symplectic data from T*Pj, to PV,

Namely, let us provide PI™ with an action form H ] 3¢*n and the corresponding symplectic
structure 2 = dH, where 7 is the canonical action 1-form on the cotangent bundle 7*Py. In
terms of the local splitting Ts ., P*" =~ H(S) & C>°(S) induced by Darboux - Weinstein uni-

formization these two forms act on v; = (¥4, f1) and ve = (¥, fo) as H(vy) = 2/ f1 ddet
s

and

Q((ﬁhfl) ’ (1927f2)):/Sf2d190191—/sf1d190192-

In terms of the complex DW-coordinates on PE¥, the real tangent vector, along (i1, 0), and
an imaginary tangent vector (0,1,) are paired by Q as Q((¢1,0), (0,42)) = /1/111/12 dd;
s

that coincides with L2-product of 1, and 1, w.T.t. the measure 9. So, {2 is compatible with

the complex structure on 703 b and produces the Kihler triple whose Riemannian metric G
takes

G((ﬁl:fl)? (1927f2)) :/gfldﬁlﬁ0+/gf2dﬁ2ﬁ0 .

4.5.1. THEOREM. The level k half weighted Planckian cycles space PI™ has the natural
structure of an infinite dimensional Kahler variety. [l

4.6. Half weighted Bohr - Sommerfeld cycles. The natural U(1)-action on Py, which
changes a covariant trivialization of L over a given S C M, has the standard lifting on 7P}, and
on P™ as well. This action preserves the Kahler structure, because z € U(1) C C multiplies

the complex DW - coordinates by z . The volume function Ppv v R, which sends (S, @, )
to / ¥?, is U(1)-invariant. Each its level hypersurface P,}C“’tv consists of weighted Planckian
s

cycles whose underlying BS-cycle has the fixed volume ¢S. The orbit space ByY oo Py /U(1)
is called a space of half weighted BS;-cycles of volume ¢.

4.6.1. THEOREM. The space B,Ic’f{, of half weighted BSy-cycles of volume t, also has a
natural structure of an infinite dimensional Kéhler variety induced from P".
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PROOF. In terms of Darboux - Weinstein coordinates, the tangent space ﬂg,ﬂo)P}QfX consists
of v = (f,9) € Tis.99P™ =~ H(S) & C=(S) such that /dﬁﬁo = 0, because the infinitesimal

s
volume increment along v is measured exactly by this integral. The U(1)-factorization takes
(f,9) to (df,9) € T(S,ﬁO)B};jg. So, the both symplectic and Riemannian structures

(90, 11) , (92, 1)) =/Sf2d190191—/sf1d190192
G((ﬁhfl)? (1927f2)) :/Sf1d191190+/sf2d192190

remain to be well defined on B}Y, since the conditions

/dﬁlﬁo = / d¥299 =0
S S

annihilate an arbitrariness in lifting df; to f; (measured by a constant additive terms). O

85. Dynamical correspondence and BPU-map.

5.1. Action of symplectomorphisms. All ALAG-constuctions are obviously equivariant
w.r. t. the natural action of the group Smpl(M), of symplectic diffeomorphisms of M. So,
Smpl(M) acts on the spaces P'™ and BM™ by holomorphic automorphisms preserving the
Kéhler structure. In particular, the Hamiltonian (w.r.t. o) flows on M produce naturally
the Hamiltonian (w.r.t. ) flows on BI. This leads (for each level k and volume %) to the
canonical homomorphism of Poisson algebras:

C* (M) — C>(Byy) (5-1)

called the dynamical correspondence. It was precisely described by Nik. Tyurin as follows.

5.1.1. THEOREM. The Poisson algebra representation (5-1) is injective and sends a smooth
real function f on M to the function Fy on B}Y whose value at half weighted Bohr - Som-
merfeld cycle (¢,4) of volume t and level k equals

1 %
Fi(e.0) =5 [oras
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5.1.2. Remark. The representation f —— F'f preserves only the Poisson brackets but does
not preserve the usual commutative product of functions, certainly. In particular, this means
that when we quantize a dynamical system with hamiltonian h on M getting the dynamical
system with Hamiltonian Fj, on B'™, then each first integral f (i.e. a function satisfying
{h, f} = 0) leads to an infinite family of involutive integrals Ff for the quantum system:
they satisfy {Fy, F}} = {Ff", Ff} = 0 for all m, k € N but are algebraically independent now,
because of Fpi # F¥.

5.2. Return to Kahler quantization. Let M be equipped with a Kahler structure whose
Kéhler form coincides with the symplectic form w. Then the compatibility conditimns on
the prequantization data provide L with the canonical structure of holomorghic ample line
bundle and we can consider the wave function spaces, i. e. the spaces of global holomorphic
sections

Hy = H'(M, L®F) .
For any half weighted Planckian cycle (S,, ") supported by a BS;-cycle S <~ M with a

horizontal unitary section S <~ ¢*L®" and for any holomorphic section s € HO(M;, L&)
consider a smooth complex valued function v¢,, € C*(S,C) such that ¢*s = ¥, - ¢ in
C>(S, * LF).

§=1Po

5.2.1. LEMMA. Linear map H°(M, L®) « 2% . (S, C) is injective and holomorphic.
d

5.2.2. Remark: C*(S,C) is a fiber of the holomorphic tangent bundle T(s ; 4 703};‘” over
P considered with toe intrinsic holomorphic structure defined above.

5.3. Towards the Borthwick - Paul - Uribe map. Let us define a map
’ﬁhw mg HO(M, L®k)* (5_2)

by sending a half weighted Planckian cycle (,1) to C-linear form that takes s € H(M, LF)
to

/dw d? =/1/JW frdp e C
S S

In terms of complex DW-coordinates on 7032‘” near (S, @, 1) it sends ¢, + 71)2 to a linear form
on H°(M, L®*) that takes s to / ¥, ,W2e™? dy? Tts differential sends 1/, + it to a functional
s

5 — /S o (2061 + itpy) dO?

Although this map is not C-linear, the defect is measured by a constant factor. That is the map
(5-2) has a constant Kdhler angle, i. e. is almost holomorphic. In fact, using the metaplectic

formalism, the definition (5-2) can be modified in order to get a holomorphic map whose

differential would sesquilinearly dual to the restriction map H(M, L®*) c ¥me | oo (S,0).

So, the Hardy spaces, which appear in the Berezin — Toeplitz quantization procedure, are just
the canonical projections of the universal holomorphic tangent bundle on the space of half
weighted cycles. This is the true geometrical reason for the existence of a canonical flat
connection on the bundle of conformal blocks mentioned in n°1.8.2.
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1. Introduction and Motivation

In this note we study the classification of solitons in string theory and M-Theory.
Our starting point is the intersection of two suggestive results. First, as argued by Witten
[1][2] and more extensively by Diaconescu, Moore and Witten [3][4], certain subtle phases
in the M-Theory partition function suggest a connection to an Eg gauge theory over a 12d
manifold Z bounded by Y. This follows from the fact that Eg bundles in 12d are specified
topologically by their Chern-Simons 3-form [5], so that the calculation of these M-Theory
phases as sums over topologically distinct M-Theory 3-form configurations takes a natural
form in terms of the index theory of 12d Eg bundles. That this Fs index theory result
agreed precisely with a very different calculation based on IIA K-Theory led Diaconescu,
Moore and Witten to suggest a deeper connection between the M-Theory 3-form and the
Chern-Simons 3-form of a 12d Eg bundle. Since the index calculation depends only on
0Z =Y, the physical data lies in the restriction of the 12d bundle to an Eg bundle in 11d.

Secondly, it is commonly believed that the K-Theory of CP™ ~ K(Z,2) bundles
classifies D-Brane configurations in Type IIA string theory, as argued in [6][7] and phrased
in terms of K(Z,2) in [8]. However, the physical connection of the group K(Z,2) to
M-Theory is unclear. Moreover, as fleshed out in a beautiful paper by Maldacena, Moore
and Seiberg [9], the Atiyah-Hirzebruch Spectral Sequence (AHSS) construction of the K-
Theoretic classification of Type IT RR solitons involves anomaly cancellation conditions in
an intimate and beautiful way. How this relates to the proposal of [8] is again unclear.

These lines of reasoning beg to be connected. As a first hint, note that K(Z,2) and
LEg are homotopically identical up to 7m14. *,* Thus the classification of LEg bundles over
10-manifolds agrees with that of CP°° bundles. Further, up to important questions of cen-
tral extension and torsion which we address below, the classification of LFEg bundles over
10-manifolds is precisely the classification of Es bundles over 11-manifolds with a compat-

ible circle action. Thus the classification of solitons and the cancellation of anomalies in

3 LEjs denotes the loop group of Fs, and LFEs its centrally extended generalization. We describe
their low-dimensional topology below; for a complete discussion, see eg [10].

* We are deeply indebted to Petr Hofava for insightful discussions during early stages of this
work suggesting looking at the loop group of Es as an M-Theoretic alternative to the stringy
picture of K(Z,2) arising from an infinite number of unstable D9-branes [11]. For a discussion of
possible relations between these two pictures and their implications for supersymmetry and 11d

dynamics, see [12].



M-Theory and ITA (and Heterotic, as we shall see), as well as the relationship between
these as revealed by the AHSS, can all be phrased in terms of a single Fg structure in
11d. That an 11d Eg bundle ties together so many pieces of the M-Theory puzzle strongly
supports the conjecture that an 11d Fs bundle plays a physical role in M-Theory, and
should be reflected in its fundamental degrees of freedom.

Taking this seriously thus leads us to conjecture that the classification of RR and
NSNS solitons in ITA derives from the classification of LEg bundles over 10-manifolds.
This generalizes the accepted K-Theoretic classification of RR solitons (and adds to grow-
ing evidence that K-Theory at least approximately respects IIB S-duality, suggesting that
K-Theory plays some role even beyond weak coupling) while leading to novel predic-
tions about the complete classification of ITA solitons, including the interpretation of the
cosmological “constant” Gy of (massive) ITA as the central charge of LEg, and several
constraints relating torsion in M-Theory, LEs and IIA.

In the remainder of this note we present further motivation for these conjectures and
show how such a framework reproduces and extends the familiar classification of solitons in
M-Theory and its 10d descendants®. Of course, 11d SUSY does not to play well with gauge
bundles, and it is difficult to see how a dynamical bundle can coexist with 32 supercharges.
(For further thoughts along these lines see eg [14][12].) However, objects to which the Fs
gauge connection couples in M-Theory and the string theory generically violate at least half
of the supercharges, so we might expect to see gauge bundle information only in situations
with reduced supersymmetry. In any case, the resolution is unclear, so we restrict ourselves
in the following to studying the soliton classification, leaving questions of dynamics and
SUSY to future work. We begin by reviewing the topological classification of Eg bundles

over 11-manifolds.

2. The Topological Classification of Es Bundles in 11d

Es has exceptionally simple low-dimensional topology. In particular, its only non-
trivial homotopy group below dimension 15 is m3(Es) = Z. The basic non-trivial Ej

bundle is thus that over an S* whose transition functions on the S§3 equator lie in 73 (Es).

® Since the dilaton is not constant in the presence of D8-branes, this should properly be called
a cosmological term rather than a cosmological constant.
6 For earlier thoughts on the role of Es in M-Theory, see eg [13][14][15]. See also [12][16]for

related current work



Due to the absence of other relevant homotopy classes, F3 bundles over manifolds of
dimension 3 < d < 16 are topologically classified entirely by the transition functions on
the S® equators of §*’s in the 4-skeleton of the base manifold [5]. These are measured
by the restriction of the first Pontrjagin class p;, which is the exterior derivative of the
Chern-Simons 3-form C3 on each coordinate patch [5], to the given S*. Eg bundles over 11-
manifolds are thus topologically classified by the specification of a 3-form (5, a remarkable
fact that depends crucially on the simple low-dimensional topology of Es.

The basic monopole in such bundles is thus a codimension 5 object supporting 4-form
flux such that the integral of p; over an S* linking the defect is the monopole number,

/ %:nez, (2.1)
s

4271'

where G4 = dC5; =dTr (AN F + %A AN AN A). There is also a codimension 4 instanton
such that the integral of p; over a transverse 4-plane is non-zero. Such a bundle can be
trivialized inside and outside any 3-sphere in this plane, with the transition functions on
this linking S* classified by 73(Fs). If we restrict to configurations which are compactly
supported in the transverse plane, the integral of p; over the transverse 4-plane is thus an
integer counting instanton number. Such an instanton can be produced by considering a
monopole-antimonopole pair whose fluxlines run from one to the other; the integral of p;
over a transverse 4-plane between them is thus quantized, with the choice of orientation
specifying whether this plane links the monopole or antimonopole and thus fixing the
sign. If the flux takes delta-function support in the transverse plane, this is a zero-radius
instanton Poincare dual to the first Pontrjagin class of the bundle.

Due to the magic of FEjg,

Gs NGy

= /\ =
P2 =p1/APp1 1672

a relation that would not hold had we considered for example U(N) bundles. Thus p,
does not reveal any new topology not already contained in GG4. However, since we can
always pull the codimension 5 defects to infinity, p» can represent a charge in compactly
supported cohomology. For example, consider a bundle such that the integral of p, over
some 8-plane is non-zero; this reveals the presence of a codimension 8 object Poincare dual

to p2. Since we can express p, as the exterior derivative of a 7-form G7, we can relate this

3



integral over an 8-plane to an integral over its “S7 at infinity” (again, we are looking at

compactly supported cohomology) to get

/ p2=/ 9 ez,
RS 57271'

so the codimension 8 objects are quantized and localized. There is again an associated
codimension 7 “instanton” (properly, this is an intersection of codimension 4 instantons)
such that the integral of G7 over a transverse 7-plane is non-zero. Instanton number is
quantized in a more subtle way here, since there is no homotopy class directly counting
these instantons. However, since these codimension 7 instantons can be constructed as
the flux stretching between a codimension 8 monopole-antimonopole pair, a quantization
condition applies.

The role of these codimension 7 and 8 objects is more transparent when we consider

the first non-trivial AHSS differential for such bundles,
dys = G4 U +[Torsion]. (2.2)
Ignoring torsion for the moment, this differential enforces for example the condition
d* Gy = G4 N Gy.

This reflects the fact that the G; whose exterior derivative is p, really is the dual of Gy.
Physically, this equation requires a codimension 5 object wrapping a 4-cycle supporting &
units of G4 flux to be the endpoint of k£ codimension 8 objects.

This classification has an immediate reading in terms of the conjecture discussed
above. The codimension 5 monopole is the M5-brane, the codimension 8 the M2-brane,
while the codimension 4 and 7 instantons are the M-Theory M F6 and M F3 Fluxbranes
discussed by Gutperle and Strominger[17]. Moreover, the AHSS differential precisely effects
the 11d supergravity equation of motion d * G4 = G4 A G4, which implies that an M5
wrapping a 4-cycle supporting k units of G4 flux must be the endpoint of k¥ M2-branes, a
familiar result, and ensures the Dirac quantization of the M2 and M F'3 branes.

Returning briefly to (2.2), the torsion terms can be studied by checking when the sign
of the Pfaffian of the Dirac operator can be made well defined for the fermion contribution
to a path integral describing an open M2-brane via the inclusion of some chiral 2-form.

In particular if the M2-brane wraps a circle we recover the familiar obstruction W3 + H

4



from [18]. We reserve further discussion of 11d torsion until Section 6; about 10d torsion
we will say more shortly.

At this point it is clear that the soliton spectrum of the various perturbative string
theories should be reproduced by compactifying the base manifolds of our 11d Es bundles,
since it has precisely reproduced the M-Theory solitons from which they descend. Ex-
plicitly studying the dimensional reduction of the Eg bundle will reveal several interesting
details, including an intrinsically 10d classification of ITA solitons treating NSNS and RR

solitons largely symmetrically, to which we now turn.

3. Type IIA and K-Theory from LFE;s

Consider an Es bundle F' over an 11-manifold Y with a circle action that commutes
with the transition functions. Let X be the 10d space of orbits of the circle action. Sections
of F' thus define sections of an LFEg bundle £ — X.

Let’s pause to review the topology” of LEg. By the canonical homotopy-lowering map,
np(LEg) = Z for p = 2,14,22, ..., and trivial otherwise. The low-dimensional cohomology
is similarly simple,

Heven(LEs) Z Hodd —0.

Since H»(LEs) = Z, LEs admits a central extension given by a single positive integer.
This centrally extended Kac-Moody algebra has a canonically associated group manifold,
both of which we shall denote by LEs in a heinous abuse of notation. The topology of
LEs differs from that of LEs in several important ways. In particular, - (EEg) is trivial®,
and its low-dimensional cohomology is consequently different from that of LFs.

We now return to our 10d and 11d bundles. For every soliton or defect in F' there
is a soliton or defect in E. However, the 10d bundle has a generalization which does not
lift, measured by the integer central extension of LEs. Since 73 (Es) = Z # 7* (72 (EEg)),
where 7* is the pullback along the circle fibration projection map, the central extension

of LEs obstructs a lift to 11d. Correspondingly, Type ITA string theory has a single

7 For a more extensive discussion of such (possibly centrally extended) loop algebras and the
topology of their canonically associated group manifolds, see [10].

8 The triviality of =, (EG) depends only on G being simple and simply connected. This is
essentially the statement that LG admits a single universal central extension of which all others

are cosets; see [10] for an extensive discussion of the topology of centrally extended algebras.
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integer, the 0-form field strength Gy, which is the obstruction to lifting to M-Theory.
Domain walls over which this integer jumps, D8—branes, similarly cannot be lifted. We
thus conjecture that the central extension k of this LEs bundle over 10d measures the

cosmological “constant” of (massive) IIA, Gy, as

Go = k. (3.1)

That a lift is indeed possible when Gy = 0 fixes a possible additive constant to zero®.

The distinct topology of the centrally extended LEjs implies that the spectrum of
stable, consistent D-branes is altered in the presence of D8-branes. In particular, charac-
teristic classes which are torsion when the central extension is non-vanishing will reveal
instabilities of various brane configurations in the presence of GGy which may be stable in
the absence thereof, or vice-versa. We are thus led to study the complete topology of LFs,
including torsion, which will provide explicit, testable predictions about the (in)stability
of brane configurations in massive ITA[19].

Since the homotopy and cohomology groups of LEs agree with those of PU(o0) =
CP>= = K(Z,2) up to'® dimension 14, the classification of RR solitons via LFs bundles
differs from that of Bouwknegt and Mathai [8] only in phenomena related to high (greater
than 14) dimensional topology'!. Remarkably, the same LEjg structure also serves to

classify the NS-NS solitons, as we now discuss.

3.1. NS-NS Solitons from LEs

Since m2(LEs) = Z, the primary 10d LEg defect is codimension 4, i.e. (5 + 1) di-
mensional as in 11d. An S linking k such defects, or more generally any S® supporting k

units of H-flux as in the SU(2) WZW model, has LFEs instanton number equal to k. By

9 Notice that this proposal is reminiscent to the situation in AdS/CFT, and particularly AdSs x
5% x T* in which the cosomological constant on the AdS; is determined by the central charge of
the sl, affine Lie algebra of the boundary WZW model. We thank Liat Maoz for reminding us of
this relationship.

10 K(Z,2) is by definition the space whose homotopy classes are all trivial except for
m(K(Z,2)) = Z. 1t is realized for example by CP> which appears in the consideration a la
Sen of D-brane classification via non-trivial tachyon bundles associated with the gauge bundles
over D-D pairs.

11 Bouwknegt and Mathai [8] argue that ITA D-branes are classified by the K-Theory of the
algebra of sections of a vector bundle associated to a PU(co) = K(Z,2) principal bundle, roughly.
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this we mean that the bundle can be trivialized on the northern and southern hemispheres
and the transition function is the element k of m3(LEg). The defect is characterized by the
fact that, at the defect itself, the LEg picture breaks down because the circle orbits are
not closed. This 10d defect is the reduction of an 11d defect transverse to the S'. This is
precisely the ITA N S5-brane arising from a transverse M 5-brane.

Similarly, a fundamental ITA string is an 11d codimension 8 soliton whose embedding
is invariant with respect to the circle action. In particular, the 11d bundle is then invariant
with respect to the circle action, so transition functions of the 10d bundle consist of zero-
modes in LFg, that is, they inhabit an Eg subgroup. In fact the transition functions in
10d are just the embedding of those in 11d into LFs, and so the fundamental string is,
like the M2-brane, Poincare dual to the square of the first Pontrjagin class (the second
Pontrjagin class) of this Es sub-bundle of the LEgs bundle. This is however not to say that
the rest of the LFEg is unimportant - in particular, the dynamics of the M2-brane need not
respect the circle action, so those of the fundamental string need not restrict themselves

to the zero mode subgroup at finite coupling.

3.2. RR Solitons from LEs

Let’s quickly return to the classification of RR solitons via LFEg bundles. The D4-
brane arises as an 11d 5-defect whose embedding and field configuration are invariant
under the circle action. Similarly to the F-string it can be realized with an Fs C LFs.
It is characterized by the fact that each linking S* has Ej instanton number one. The
D2-brane is a 2 + 1-soliton transverse to the circle, and is Poincare dual to d * G4, a
7-form related to p; of the Es bundle by the canonical dimension lowering map between
characteristic classes of a space and its loop space. The D6-brane arises from a non-trivial
circle fibration, such that the m of LFEjg lifts to the w3 of Eg via a Hopf fibration, while
the D0-brane arises as usual as a momentum mode along the S* fibers. In both cases the
associated flux arises from the KK gauge field, the branes representing trivial Fg fibrations
over the 11-fold.

Finally, as discussed above, D8-brane number is connected to the central extension of
LEg. Thus, while the D8-brane does not appear to have a simple geometric interpretation
in terms of an 11d Ej soliton, it has a deep connection to the LFEjs structure in 10d.
This connection may provide insight into the connection between 11d gravity and the Fs

structure[12].



3.3. Fluzbranes from LEjg

The 11d Ejg origin of ITA Fluxbranes is similarly automatic; its reading in terms of
LEg follows naturally. The simplest example is the direct dimensional reduction of the
codimension-4 Eg fluxtube, which gives the NS-NS F6 in ITA. Similarly, a codimension-
4 fluxtube which wraps the M-Theory circle remains a codimension-4 fluxtube - this is
the ITA RR F'5-brane. Analogously, the codimension-8 fluxtube reduces transversely to
the RR F3-brane and, wrapping the M-Theory circle, to the NSNS F2-brane. The F1
and F'7 arise as fluxtubes associated to the nontrivial bundles of the D0 and D6 branes,
respectively. Thus we realize the full spectrum of RR and NSNS Fp-Branes discussed by
Gutperle and Strominger [17] in terms of LEs, as expected.

3.4. K-Theory from LEs and Indiscretions regarding Torsion

We have seen how the classification of both NSNS and RR solitons in Type ITA
arises from the classification of LFEg bundles in 10d, these derived from a fundamental
Es structure in M-Theory. Due to the remarkable topology of LFs, this reproduces the
conjectured K-Theoretic classification for RR charges and fields. We would now like to
connect this construction with the AHSS approximation to the K-Theoretic classification.
In the remainder of this section we will use the language of M-branes and D-branes for
simplicity and clarity; in light of the above discussion, it should be clear that the entire
discussion can be phrased explicitly in terms of 11d Fg bundle information.

The classifying group of solitons in M-Theory is a refinement of cohomology obtained
by taking the quotient with respect to a series of differentials that reflect the fact that
some configurations are anomalous and so should not be included, while others are related
by dynamical processes and so must carry the same conserved charges(see eg [9]). For
example, an Mb5-brane wrapping a 4-cycle that supports k units of G4 flux leads to an
anomaly that, neglecting torsion, can be canceled if k& M2-branes end on the M5. Thus
some M5-brane wrappings are anomalous and some M2-brane configurations (such as k
M?2’s and the vacuum) are equivalent, this following from the 11d supergravity equation

of motion

d*G4:G4/\G4.

The left hand side of this equation is the intersection number of M2-branes with a sphere
linking the M5, and the right is roughly the integral of the G4 flux over the 4-cycle wrapped

by the 5-brane. Both of these numbers are measured in units of the 8-form Poincare dual
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to the M2-branes. In the absence of M2-branes ending on the M5’s, this supergravity
constraint is summarized!? by requiring that the following “differential” annihilate the Gy

flux

dsGy = G4 N G4 + [Torsion].

We expect that the torsion terms are nontrivial because, for example, G4 is half-integral
when the M5 brane wraps a 4-cycle with non-vanishing w4 [20]. Also, as we will soon see,
its dimensional reduction is nontrivial.

The classification for ITA follows from dimensional reduction of this M-Theory story.
There are three distinct classes of reductions of this constraint to ITA, reflecting three
possible locations of the M-Theory circle z!! in the above scenario. First consider an
M5-brane wrapping z!! which is not in the 4-cycle, so that the anomaly-canceling M2-
branes do wrap z!!. This leads to an anomaly condition requiring F-string insertions on
a D4 as follows. The M5-brane wraps z'! and so the G4 flux that it generates has no
11 component; it is thus not Kaluza-Klein reduced. Similarly, the 4-cycle does not wrap
and so the G4 supported on the 4-cycle is not reduced. Thus the 10d anomaly condition

arising from this situation is identical to the 11d condition:
dsGy = G4 N G4 + [Torsion],

now a 10d constraint with G4 identified with the 4-form RR fieldstrength.

Next consider the case in which both the M5-brane and the 4-cycle wrap z!!, yielding
a D4 with D2 insertions as follows. The (G4 flux sourced by the M5-brane is still not
reduced, but now the 4-cycle is reduced to a 3-cycle, the G4 flux it supports dimensionally

reduced to the 3-form H. The resulting anomaly constraint is thus
d;G4 = H N\ G4 + [Torsion].

This is a well-known differential from the AHSS for twisted K-Theory [21], which was seen
to be the relevant constraint in [9]. In particular the torsion correction was seen to be
S¢*Gy.

The final case involves an M5-brane not wrapping z!!, reducing to an N S5-brane
with D2-brane insertions. In this case the 4-form flux is dimensionally reduced to H while

the flux in the 4-cycle is not reduced, yielding the constraint

dsH = G4 N H + [Torsion)].

12 This was seen in type II in [9].



The torsion in this case is as yet poorly understood.

Combining these three constraints, as well as the AHSS conditions on other RR fluxes,
we hope to arrive at a K-Theoretic classification of both NSNS and RR charged objects
in ITA. We expect this classification to be T-dual to the S-duality covariant classification
in [22]. Independently of our proposal, it would be interesting to better understand the
11d lifts of the other constraints on RR fluxes.

For example, anomaly cancellation on a D2-brane in ITA wrapping a 3-cycle C' with
k units of H flux requires k D0-brane insertions. Lifting this to M-Theory we learn that,

while we know of no restrictions on what cycle an M2-brane may wrap, if it wraps a 3-cycle

C such that G
/ k40
CxSt 271'

then k units of momentum around z!! must be absorbed by the brane. To get an intuitive
understanding of the physics at work!?, let us pretend that C is a 2-cycle times the time
direction, with a constant H flux density, and then KK reduce on the 2-cycle. Before
reducing, this corresponds to a constant flux of D0-branes incident on the D2-brane in
ITA, while in M-Theory this corresponds to a steady injection of p'! into the M2. KK
reducing, the G4-flux reduces to an electric field along the circle, while the M2-brane
reduces to a particle charged under this field. This flux drives the charged particle to
accelerate around the circle with a constant acceleration, that is, to absorb p! at a constant
rate. The anomaly condition lifted to M-Theory is thus simply F' = ma! Although we do
not understand the deep connection of the M-Theory Eg bundle to gravity, this relation

between G4 and p'! is perhaps a significant clue.

4. The Heterotic String and the Small Instanton Transition

Consider now an Fg bundle over an 11-fold X = M x 51/22. The bulk bundle
naturally restricts to two 10d Es bundles, one over each of the two boundary components.
At this point the realization of the various objects in Heterotic string theory in terms of
instantons of the Eg bundle follows naturally from the beautiful arguments of [24]. For
example, an M2-brane stretching between the two boundary components is precisely the

strongly-coupled fundamental Heterotic string. Moreover, anomaly considerations descend

13 See also the beautiful discussion in [23], which addresses an analogous effect for dielectric

branes in a non-compact geometry.
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naturally. In 11-d, there is a mod 2 relation between the Pontrjagin classes of the Fg bundle,
w(F — Y), and that of the base manifold’s tangent bundle, w(TY) - thus for example
G4 = wa(TY)/2 . This condition reduces on the induced bundle over the orbifold fixed
point to the 10d condition, which arises from a gravitational anomaly [24][25].

It is easy to see the Heterotic 5-brane arising from the bulk Es bundle. Recall that the
11d Eg 5-defect is defined such that a 4-sphere linking the 5-defect has instanton number
one. Consider a parallel 11d 5-5 pair separated a finite distance in a transverse direction,
y, of RV For every point y, there is a 10d bundle given by the restriction of the 11d
bundle to the 10d slice y = y,. Since any 4-plane in the slice y = y,,, with y, between the
two defects, links one or the other of the defects, the 10d bundles over points between the
two 5-defects have instanton number +1, the sign fixed by choice of orientation, while the
10d bundles over points not between the two defects have instanton number zero. Since
the 10d bundles over points between the 11d defects are non-singular, their instantons are
“large”. The singular 10d bundles which contain the 11d 5-defects, by contrast, contain
“small” instantons. These are the Heterotic 5-branes.

Next consider a similar configuration with the two defects pulled away to infinity,
leaving a single codimension-4 instanton stretched along the coordinate y and taking com-
pact support in the transverse 4-plane. If we pinch the instanton over a point y = y,, we
can nucleate a 5 — 5 pair at y, and move them away to infinity, leaving behind no flux in
the interval between them. From the point of view of the 11d bundle, this is a completely
continuous process respecting all conserved charges and symmetries. From the point of
view of the induced 10d bundle over any point y = y, # y«, however, things look rather
odd; the originally large and fluffy instanton shrinks to a singular “small” instanton and
then disappears altogether!

Now consider an Es bundle over the 11-manifold ¥ = R®) x (R/Z), where the y
coordinate along which the 11d instanton is extended has been orbifolded by a Z; reflection.
If we repeat the pinching-transition over the point y = 0, which from the point of view of
the covering space is completely continuous and respects all conservation laws, as well as the
orbifold symmetry, we find a transition in the orbifold theory in which a “large” instanton
in the boundary bundle shrinks to a singular “small” instanton before disappearing from
the boundary and moving into the bulk as an 11d 5-defect, i.e. an M5-brane. This is
precisely the Heterotic small instanton transition studied near one boundary component,
as read by the 11d Eg bundle. Note that, while the number of boundary instantons nsy

is not conserved, ngy + ny is.

11



5. Speculations about EF3 Bundles and 11d SUSY

Since objects to which the Eg gauge connection couples in M-Theory and string theory
violate at least half of the 32 11d supercharges, we should perhaps expect to see gauge
bundle information only in situations with reduced supersymmetry. It is thus reasonable
to wonder if the gauge connections inhabit representations of only a sub-algebra of the 11d
superalgebra, representations that in particular contain neither gravitons nor gravitinos.
The Chern-Simons 3-form of this connection can then be set equal to the 3-form in the

11d supermultiplet, for example via a Lagrange multiplier'*,

88 ~ / a(OM — CFs).
Mll

It is worth keeping in mind that both the M-Theory 3-form and the Es Chern-Simons
form respect an abelian gauge symmetry, since for example under a local Fg gauge trans-
formation with gauge parameter A the CS-3-form transforms as ¢ — C' +dTr(AF), so this
action is in fact gauge invariant and respects all the requisite symmetries.

Of course, not all bundles in the same topological equivalence class correspond to
BPS solitons. Rather, the bundles in each equivalence class are related by a change in
boundary conditions which does not change the topology; in the associated SUGRA class,
this corresponds (roughly, as the equations of motion are non-linear) to a shift by a solution
to the vacuum equations of motion. However, since the topological classification of bundles
is precisely the classification by charge (at least up to torsion terms), there is some choice
of background fields which does not affect the topological class and yields precisely the
BPS soliton. In particular we attribute an array of classical moduli, such as the size of

Heterotic instantons, to precisely such a freedom of choice of boundary conditions.

6. Conclusions and Open Questions

We have argued that the topological classification of Es bundles in 11d, which natu-
rally reproduces the soliton spectrum of M-Theory, reproduces when reduced on S'/Z,

the spectrum of Heterotic Eg x Fg, while reduced on S' reproduces the spectrum and

14 We particularly thank Eva Silverstein for discussions on this topic.
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K-classification of RR and NSNS solitons in Type IIA'®. Remarkably, while there appears
to be no simple dynamical role for Fg in Type IIA, there does appear to be a deep role
for its loop group LFs in the K-Theoretic classification of ITA solitons, including in an
important way its central extension. The relevance of Eg bundles even for perturbative
string theories with no dynamical gauge bosons suggests an important role for Fg in the
construction of the fundamental degrees of freedom of M-Theory.

The most obvious open question is how, precisely, an 11d gauge theory fits with 11d
supersymmetry. This is extremely confusing. Perhaps a natural place to look for hints
to this puzzle is in Heterotic Eg x Fg, where the gauge boson couples in an intricate but
natural and beautiful way. Extending this story to 11d would be an exciting advance.

Another obvious omission in our presentation is the absence of torsion terms in (2.2).
That this is an important omission is clear from any geometry where, for example, an
M5-brane lies inside not an S* but some orbifold thereof. Following [3], one thus expects
the torsion terms to include some Z lift of sq*; however, as there is no canonical lift of
the Z, Steenrod squares of even rank, identifying the correct “derivation” is somewhat
delicate. In the language of Witten, and in the orientable case, one might expect the fourth
AHSS differential to take the form ds = A + G4U. However, the sign in front of A is not
obvious. It could of course be fixed by comparison with the 5-brane anomaly, but would
still leave ambiguous the correct torsion terms in non-orientable cases, where some lift of
the Z, Steenrod square sq* must obtain.

One avenue of approach might be to identify a canonical lift for the special case of

11-folds with compatible circle actions. As a first guess, define
~ 4 «
Sq =T (SQ3)7

where 7* is the pullback of the projection of the S§! fibration. From various Adem relations
one can argue that this restricts correctly to sq* if 7*(8) = sq®. A case where one might
test this possibility would be an M5-brane wrapping SU(3)/SO(3) = M5, whose anomaly
requires an M2-brane to end upon the M5-brane. Reducing on an S! to a D4-D2, the

anomaly arises from S¢® in the D4-brane worldvolume, which is canceled by the incident

15 While we of course do not have a candidate for what the complete K-Theory of LEs bundles
is, it should be identical to that of the universal classifying group K(Z,2) up to corrections in-

volving topology well above 11d, as discussed above. One might for example attempt to generalize

Rosenberg’s K-Theory, [21].

13



D2. Pulling back along the S fibration, Sq® should lift to a Z-graded rank-four differential
which measures the correct 10d anomaly under bundle projection. It would be interesting
to explicitly check when, if ever, such a non-trivial pullback exists, and when it does
whether it restricts to the Z,-graded sq*. We leave such questions to future work.
Finally, it would be particularly interesting to revisit the beautiful and delicate cal-
culations of Diaconescu, Moore and Witten in [3], who showed that the cancellation of
anomalies in ITA and M-Theory agree, though the structures underlying the calculations
in the two cases were apparently unrelated. DMW read this unlikely agreement as strong
evidence for the conjecture that RR fields and charges in ITA are indeed classified by K-
Theory. We expect that the IIA computation will take a natural form in terms of Fj
bundles, and that in this language the relation to anomaly cancellation in M-Theory will

be immediate. This would be interesting to check directly.
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Abstract

In this paper some properties of the superstring with noncommutative worldsheet
are studied. We study the noncommutativity of the spacetime, generalization of the
Poincaré symmetry of the superstring, the changes of the metric, antisymmetric tensor

and dilaton.



1 Introduction

The noncommutative geometry [1] has been considered for some time in connection with
various physics subjects. Recent motivation to study the noncommutative geometry mainly
comes from the string theory. String theories have been pointing towards a noncommuting
scenario already in the 80’s [2]. Recently Yang-Mills theories on noncommutative spaces
have emerged in the context of M-theory compactified on a torus in the presence of constant
background three-form field [3], or as low-energy limit of open strings in a background B-
field, describing the fluctuations of the D-brane worldvolume [4, 5, 6]. The worldvolume of
a D-brane with constant background B-field, is an example of a noncommutative spacetime,
in which gauge and matter fields live [3, 4, 5, 7]. In other side, fundamental strings in the
R®R background B-field become noncommutative. This was shown in the context of matrix
theory [8].

Field theory on a noncommutative space has been proved to be useful in understanding
various physical phenomena. Noncommutative field theory means that fields are thought of
as functions over noncommutative space. At the algebraic level, the fields become operators
acting on a Hilbert space as a representation space of the noncommutative space [9].

Previously we considered the superstring action as a two dimensional noncommutative
field theory [10]. Up to the first order of the noncommutativity parameter, and some ad-
ditional terms to the noncommutative superstring action, some physical quantities are ob-
tained. For example, we obtained new supersymmetric action for string, extended boundary
state of closed superstring, new boundary conditions for open string which lead to the gen-
eralization of the noncommutativity parameter of the spacetime.

In this paper, we do not consider the additional terms to the superstring action. Accord-
ing to this, now we study some other properties of the superstring with noncommutative
worldsheet, to all orders of the noncommutativity parameter. Noncommutative worldsheet
of string gives a noncommutative spacetime. If some directions of the spacetime are com-
pacted on tori, the vacuum expectation value of the spacetime noncommutativity parameter
can be non-zero. Noncommutative worldsheet also enables us to generalize the Poincaré
symmetry. That is, some additional terms can be added to the ordinary Poincaré transfor-
mations. Therefore, we obtain a generalized conserved current. Furthermore, the NSQNS
fields of superstring modify by a common phase. Making use of the Refs.[10, 11], one can
find descriptions of the noncommutativity parameter of the worldsheet. For # = 0, all these
results reduce to the known cases of the superstring theory with ordinary worldsheet, as

expected.



This paper is organized as follows. In section 2, we study the action of the superstring
with noncommutative worldsheet. In section 3, the noncommutativity of the spacetime,
extracted from the noncommutativity of the string worldsheet, is studied. In section 4, a
general form of the Poincaré symmetry is given. In section 5, the effects of the noncommu-

tativity of the worldsheet on the metric, Kalb-Ramond field and dilaton are extracted.

2 Noncommutative worldsheet

We look at the superstring action as a two dimensional noncommutative field theory. In
other words, assume that the superstring worldsheet i1s a two dimensional noncommutative

space. In this space superstring with worldsheet supersymmetry has the action

S, = —

4;@/ / d%(@axuaaxu —ii“*paaa%) , (1)
where the spacetime and the worldsheet metrics are 7, = diag(—1,1,...,1) and 5y =
diag(—1,1). We later discuss about the supersymmetry of this action. The star product
in this action is defined between any two functions of the worldsheet coordinates o* = (o, 7)

(1 00
f(O',T) * 9(0-77—) = €Xp <29 aCa anb

) g’ ) . 2)

Ca:,r]a =g

The antisymmetric tensor % has only one independent component i.e., % = 8e® where
e’ = —€'® = 1. Definition (2) gives the noncommutativity between the worldsheet coordi-

nates as
ot % o’ — ¥ x 0% = iH . (3)
The equations of motion of the worldsheet fields are
(07— 2)X¥ = 0, 9" = 0.9 =0 ()

where 91 = 1(9r £ 9,). Therefore, 9" and ¢ are the right moving and the left moving
components of ¥*. These equations are the same that appear for the superstring with
ordinary worldsheet. For the next purposes we need the solutions of these equations. For
closed string there is
i 1 . .
X*(o,7) = 2" + 2d'p"'T + 20" 0 + 5@2 —<05Z6_2ln(7-_0) + &Z6_2’"(T+0)> , (5)
n
n#0

where L* is zero if the direction X* is non-compact, and is N*R* if this direction is compact

on a circle with radius R*. In this case the momentum of the closed string is quantized i.e.,



pt = %. The integers N* and M* are the winding and the momentum numbers of the

closed string respectively.

For open string we have the solution

1 .
X*o,7) = 2" + 2a'p"'T + iV 2/ Z —ake™" " cosno . (6)
n#0 n

Note that this solution satisfies the boundary conditions of the variation of the action (1). In
this variation there are infinite number of boundary terms. These terms contain derivatives

that originate from the noncommutativity of the string worldsheet. The boundary condition
(0, X")gy =0, (7)

1s sufficient to drop all the boundary terms of the above variation. oy = 0,7 shows the
boundaries of the open string worldsheet.

Consider global worldsheet supersymmetry transformations

SXH = apt
St = —ip 9, X e . (8)

Invariance of the action (1) under these transformations leads to the worldsheet super-current

1
Ja = §pbpa¢“ * aqu . (9)

According to the equations of motion, this is a conserved current i.e., 9*J, = 0.

3 Spacetime noncommutativity

Noncommutativity of the string worldsheet directly leads to the noncommutativity of the

spacetime. Making use of the formula

eip(f—l—ko) % 6iq(ﬂ'—l—lo‘) — 6%qu(k—l)eip(ﬂ'—l—ka)eiq(T—I—lO') 7 (10)
we obtain the following noncommutativities for the spacetime
[(X*(a,7), X" (0,7)]. = 8(2a)>/? > (ptal — prat) e sinno
n#0
/ 1 v v —i(m+n)T 1 1
—2a Z Z —(akal — arak)e cosm(o + §n9) cosn(o — §m9) , (11)
mn

m#0 n#£0



from the open string point of view, and

[XM(O-vT) ” XV(O',T)]* = 47:(90/(1)#[/1/ - pVLM)

+if(2)*7 Y <(04Zp” — alpt)e™ ) — (ahp? — &Zp“)e_%"(”"))

n#0
+210V 2/ Z <(O‘ZLV — aZLM)e—%n(T—G) + (atL¥ — "’ZLM)G—%TL(T-I-O'))
n#0
1 : .
—ia Y > <—(o~cﬁa§fn —ayak) sin(4mn(9)6_2’(”“"")762’(’”_")0) \ (12)
n#0 m#£0 mn

from the closed string point of view. The right hand sides of the relations (11) and (12) are
non-zero. This is because of the non-zero value of the parameter . Therefore, the noncom-
mutativity of the spacetime, resulted from the noncommutativity of the string worldsheet,
depends on the fact that the propagating string in the spacetime is open or is closed.

Now consider the following expectation values of the commutators (11) and (12)

0][X*(o, 1), X"(0,7)].]0) =0, for open string,
(v|[X"(o,7), X"(0,7)]|v) = 10", for closed string , (13)

where |v) = (0,0 ; {M*},{N"}) is a closed string state with the momentum numbers {M*}
and the winding numbers { N*#}, and

0" = 4d'6(p"L” — p” L")
v n
_ 4a’6<M“N”% _ M”N“%) , (14)

therefore, if some of the directions of the spacetime are compactified on tori with radii {R*},
a closed string with noncommutative worldsheet, momentum numbers {M*} and winding
numbers { N*}, probes the expectation value of the noncommutativity of the spacetime like
the relation (14). Open strings with noncommutative worldsheet do not probe the vacuum

expectation value of the spacetime noncommutativity.

4 Poincaré symmetry

Poincaré transformations 0. X* = a* X" 4 b* and d¢* = a*,3p”, are global symmetries of the
superstring theory with ordinary worldsheet, where a,, 1s a constant antisymmetric tensor
and b is a constant vector. Two conserved currents are associated to them. For the super-

string theory with noncommutative worldsheet, these transformations can be generalized.



Therefore, the effects of this generalization also appear in the currents. The generalized

transformations are
OXH = a“yX” + b,
dpt = at (P” + D" x p —7P) (15)

where ¢(o, ) is a scalar of the worldsheet. It will be determined in terms of the coordinates
o and 7.
Making use of the equations of motion, the variation of the action (1) under the trans-

formations (15), is

55, = #a,aw / dza@ﬂ « pH (" % Bup — ¢”aa¢)> . (16)

For vanishing of this variation, one possibility is that J,¢ be constant i.e., independent of

the coordinates ¢ and 7,
a0, 7) = ¢, . (17)
This equation has the solution
$(0,7) = cad® + o , (18)

where cg, ¢; and ¢y are constants.

The currents associated to the transformations (15) are

1
' 19
a 27‘-0{/ ( )
1
= <(X“ K 0aX” — X7 % 0,XP 4 0,X" % X" — 0, X" % X")
T

i a5 = 9 8) — i % pula 5~ ) )
B g — B = pu). (20)

The constant ¢q has no effects on the transformations (15) and on the current (20). According
to the equations of motion, these currents are conserved i.e., 9°P* = 0 and 9*J* = 0. If the
noncommutative worldsheet changes to the ordinary worldsheet, the transformations (15)
and the current (20) reduce to the ordinary case, as expected.

more generalization



Transformations (15) can be generalized as

SXM = at XV 4 b
S = at, (9" + byl + bothl + oo+ by (21)

where N is an integer and {by, bs, ..., by} are arbitrary coeflicients, and

,l:b::: Z—l*gb_,lp::—lgb ) ]-SnSNv

o = P (22)
Again with the choice (18) for ¢, the variation of the action (1) under the transformations
(21) vanishes. Define differential operator D as

1 1
D= _57:(9‘11)@(161) = 5’1:(9(6167- — 0060') ) (23)

therefore, ¥* can be written as
Wi = Dy (24)

This simplifies the second transformation in (21) as the following
N
Syt =a", > b, D", by=1. (25)
n=0
For the special choices b, = % and N — oo this transformation becomes

St = a* exp <%i9(0167 — coa(,)>¢”(0,7')

0 0
= a,“y’lpy <0' — %CO , T —|— %Cl> 5 (26)

which follows by combination of the shifts on the worldsheet coordinates and a rotation in
the spacetime.

The currents associated to the transformations (21), are the current (19) and

1
Je = <(X“ * 0, X" — X" % 0, X" + 0, X" % X* — 0,X"  X")

4o
N
30 (5 pa D" = % pa D) ) (27)

which is conserved i.e., 9*J* = 0. This is more general than the current (20).
Note that the parameters {b,}, ¢o and ¢; in the transformation (25) and in the current

(27), remain arbitrary. For ¢y = £¢q, the operator D is proportional to 0. In this case,

7



according to the equation (10), the effects of the noncommutativity of the worldsheet on the
fermionic part of the current (27), for n > 1, are collected only in the derivative D. That is,
the star product appears as usual product. Also the transformation (25) for n > 1 only has

derivatives of the left moving or the right moving components of the worldsheet fermions

{9}

5 The fields g,,, B,, and ¢

We are interested in to know the effects of the noncommutativity of the string worldsheet on
the metric, antisymmetric tensor and dilaton. We discuss on these fields both in the bosonic
string and in the superstring theories. The states of these fields can be extracted from their
vertex operators.

For the bosonic string consider the operator
24 .
¥ (p) = ——Z, /d20 CO_XH % 0L XY xePX (28)
T

Making use of the solution (5), therefore from the state

Q(0)]0,0;p=0), (29)
we read the state
e 0" @210 ,0;p=0). (30)
According to this state we have
9" = e Mg,
Ly
By = e P . (31)

Therefore, these fields take only a phase. Modification of the dilaton changes the string
coupling constant.
For the superstring, g,,, B,, and ® are the NSQNS sector fields. The states of these

fields can be extracted from the following state
2 2 I3 v 0
——/da:¢_*¢+:|0,0;p:0>. (32)
7
From this state we read the state
e_wblil/z Zlil/2|0 0ip= 0) . (33)

8



According to this state, we obtain

g8 = e g,
B = e B"™
By =e D . (34)

Therefore, the corrections of the metric, antisymmetric tensor and dilaton in the superstring
theory are different from their corrections in the bosonic string theory. Since #-parameter is

real, the real parts of these fields can be interpreted as physical fields.

6 Conclusions

The noncommutativity of the string worldsheet leads to the noncommutativity of the space-
time. The latter depends on probing by open or closed string. If some of the spacetime
directions are compactified on tori, the noncommutativity of the spacetime depends on the
momentum numbers and the winding numbers of the probing closed string.

By adding some additional terms to the Poincaré transformations of the worldsheet
fermions, the Poincaré symmetry of the superstring was generalized. The noncommutativity
of the superstring worldsheet permits this generalization and consequently the generalized
form of the associated conserved current.

The NS®NS fields of the type II superstring (i.e., the metric, antisymmetric tensor and
dilaton) changed only by a phase. The changes of these fields in the bosonic string theory,

are different from their changes in the superstring theory.
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THE POLARISATION OF THE SCATTERING PARTICLES ON HIGH ENERGY
APPROXIMATION

S.G. ABDULVAHABOVA, E.A. RASULOV
Baku State University

The differential cross-section of diffraction p’Be scattering at high energies and polarization effects are calculated in the
framework of the multiple scattering theory. By taking explicitly into account the composite structure of nucleons exchange
effects we eliminate some discrepancies between the theory and the data that were recently pointed out.

1. Introduction

The available experimental data point to the absence of the energy interval of scattering. This makes a basis for
the hypothesis about the existence of a non-zero polarization research on the future accelerators will provide
information about the structure of the nucleon interaction at large distances.

Using different hypotheses about the property of the nucleon interaction at large distances a number of model
approaches leads to the nondisappearing polarization in high -energy processes at small transfer moment.

In this paper we regard the model results for the polarization effects of nucleon-nuclei scattering. Early, it was
shown [1] that in the framework of the hypothesis concerning the existence of quark bag in nuclei we managed to
describe the behaviour of the formfactors of nuclei at large q and structure functions of nuclei. The parameters of
quark distribution in the bag at k>>k, (the parameter k, may in principle be different for different bags) extracted
from the data on formfactors and on deep inelastic scattering of nucleons on nuclei proved to be very close.

The purpose of this paper is to show that disagreement between the high energy Glauber theory and the data
disappears if the composite structure of nucleons is explicitly taken into account in the calculation of the differential
cross section and polarization effects p’Be reaction according to the multiple scattering theory.

2. The model formalism

In agreement with the Glauber theory [2], which is a rather accurate one at high energy< the amplitude of the
direct reaction of proton on a nucleus may be written as

@)= [eptiah/ulrioithab. )

F(b)zl—ﬁ[l—ej(b—sj)]. @)

Here ¢ is the momentum transfer, k is the value of the wave vector of the scattering proton, b is the impact-
parameter vector, II(},7,,....r, ) is the ground state wave function of the nuclei, 7'(b) is the total proton — nuclei

interaction profile function, e j (b) is the profile function for the elementary proton-nucleon interaction, brackets

<| |> mean interactions over the nucleon coordinates.

A nucleus in the quark model is described as a system of many clusters, and each cluster consists of three quarks.
Then a nuclear non-antisymmetrized wave function in the oscillator-cluster model can be written as [3]

Vg = On, (11015 )Py (s 1o 1oy JY( R R, LRy ) 3)

where the nucleus is pictured as a bag with radius R,, located at Ry enclosing 4 nucleons with radius located at R;.
Using the relations
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R= P32 'H;H T , i=1,2,..9 “)

and

¢(r)=(NwR} Jexp(~r/R?), (5)

we can write (3) in a factorised form

2 2 2
Gjoa Y1 15 { 1 1

9
5Ugfzs’ezl_[e)cp[ ](S3j—2+53j—1+33j)_
j=1

R, R R
(6)
1 1
-3 R_j_R_,f (1 )Y,,(3.9).

Then scattering amplitude (1) may be written in the form

F(a)=(ik/ 22 ) dbexp(iab )(8,,8, )~ Detls, 8y~ (M I[TTT(1-7(b=5,+1 )N ). )

=1 j=I

The matrix element of the profile function between the single particle states described by the quantum numbers
M and N.

We consider the case where spin-flip is neglected. It is important to emphasise that the case of the nucleon-nuclei
scattering the leading asymptotic terms of the spiral amplitudes is also determined by the contribution of the quark
cluster with the evident replacement of f(¢) by the pion-nucleon scattering amplitudes.

Use of the spin-non-flip amplitude of the p’Be reaction, obtained from the formulae (7) permits us to calculate
the correct picture of polarisation at p;=40 GeV . Note that in work [3] it was supposed for simplicity that the form
of the cross-even amplitudes of nucleon-nuclei scattering is equal to the cross-odd part.

3. Comparison with the experimental data.

Figure 1 compares the results of the calculation based on formulae (7), with the experimental data for p’Be
scattering [4]. The solid line corresponds to the cross section calculated eq.(7). The dashed line corresponds to the
experimental data. Figure 1 shows that the composite nucleon model yields better agreement, and the Glauber
approach extended to the nucleus-nucleus scattering leads to satisfactory

P
5 03 Gl
& : Pr=
>
8 2 . '
3 R X 3
\E, 10 PN} & /‘!\
i} ..
c N3 S
=) 0.1 i
B 1’ f
< 0.2
: 05 Lo I3 que’?
02 04 06 08 10 1.2 |t GEV?
Fig. 1 The differential cross sections Fig.2 The polarisation of the
of the p’Be reaction of the p°Be reaction

consistency of the calculated cross section and their #-dependence with those obtained experimentally. However,
taking into account the exchange terms improved the agreement between theory and experiment.
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The model prediction for the polarisation of elastic p’Be scattering, corresponding to the experimental data at
pr=40 GeV is shown in fig.2. Note that the model predicts a large polarisation at high energies in the range of the
diffraction peak. The analysis shows that when the preasymptotic corrections are absent, we have the zero
polarisation.
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C.I. sI6auaBamadosa, E.A. PsicyioB

CAIINJISIH 351PP}IT)I/IKJIHPI/IHUI7IHKCSIK EHEPKH MAXBIHJIAIIMACBIHJIA
INOJIMAPU3ACHUUACHI

Mikesk  exepxmnsipas p Be mudpakcuiia cammiMscuund  guddepencuan KacHitn Bs  moifapusacuiia
e dexTspn HoXIAQIM CAMMIMS HA3IPUHHACHHHUH YSAPUMBACHHAS IlecabnaHMbIabp. HykIoHIaphiH MOPSIKKIO
CTPYKTYPYHY Bsl HyKJIOH MUIOaIMIACH Wi 0abibl eeKTIapu H3Aps anapar, HA3SpUHisL B TAbpUOS apackiHa
OJIaH YHBYHCY3IIyIJIap apaiaH SF0TUPLUIMIIIAL.

C.K. AdayaBara6oBa, J.A. Pacyios

HOJIAPU3ALNS PACCESSHHBIX YACTHUI B BBICOKOOHEPTETHYECKOM INPUBJIN)KEHNHU

Jluddepeniuansaoe ceueHns THGPaKIHOHHOr0 p’Be paccesHus M HOIAPU3ALMOHHBIE SBEKTHI MPH BHICOKHX
SHEPTUSIX BBIYMCIICHBI B paMKax TEOPHH MHOTOKpAaTHOTO paccesHus. [Ipu ydere cocTaBHOI CTPyKTyphl HYKJIOHOB U

3¢ ¢exToB ¢ 0OMEHAMH HYKJIOHOB YCTPaHEHBI PACX0XKICHUS MEXIY TEOPHUEH 1 SKCIIEPHIMEHTOM.

Received.:

85



CONTENTS - 4rdw

FIIZIIIKA 2002 CHILD VIIII
Ne 3

CONTENTS

The solution of Kane’s equations in magnetic field in Jannussis functions representation. . .............
.......................................................... A.M. Babayev, O.Z. Alekperov. 3
Anticipating chaos synchronization in time-delayed systemse. . . ........... ... . ... ..
................................ E. M. Shahverdiev, R.H. Hashimov, R.A. Nuriev, G.N. Gasimova 9
The reflection of the parallel-polarized electromagnetic wave at its incidence on the two-layer dielectric-

metal system underthe angle. .. ...... .. ... . . . . E.R. Kasimov 12
The influence of the temperature mode on the relaxation process velocity in polymers. . ...............
................................ N.F. Ahmedov, S.K. Abutalibova, T.I. Ismailova, F.A. Ahmedov 16
The low-frequency digital shaper of reference pulses. . . . . Ch.O. Qajar, S.A. Musayev, M.R. Menzeleyev 19
On the commutator construction with the application of diodes on the base of compound semiconductors..
............................................. G.A. Abbasov, M.N. Ibragimov, M.J. Radgabov 22
Electric properties of AgFeS; in the area of the phase transition. . . . .. .. S.A. Aliyev, Z.S. Gasanov, S.M. 24
Abdullayev

The calculation of adiabatic compressibility and heat capacity of perfluorocarbons from acoustic data. . . .
................................................ A.U. Mahmudov, S.H. Sadikhova, E.Z. Aliyev 27
Some peculiarities of the characteristics of chaotic oscillations of the solar centimeter radio emission. . . . .

Sh. Sh. Guseinov 31

The energy spectrum of charge carriers in n-AgyTe. . . ... .. o i F.F. Aliev 35
PROCEEDING OF THE CONFERENCE

Abelian Lagrangian algebraic geometry and ALAG — quantization. .. ..... ......... A.L. Gorodentsev 40

The Loop Group of Eg and K-theory from 11d..... ..................... Allan Adams, Jarah Evslin 56

More on noncommutative superstring worldsheet. . . . ...... ... ... ... ... .. .. ... Davoud Kamani 73

The polarization of the scattering particles on high energy approximation. .. ........................
........................................................ S.G. Abdulvahabova, E.A. Rasulov 83



	2002_3
	FIZ551
	fiz552
	fiz553
	fiz554
	fiz555
	fiz556
	fiz557
	fiz558
	fiz559
	fiz560
	conf1
	conf2
	conf3
	conf4
	CONT

