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The formation of slip bands in АVВVI

 foils is considered as dislocation process self-organization being in 

dislocation ensemble at level 10-20nm. The band distortion region in Bi2Te3 and Sb2Te3basal planes are revealed.  

 

Keywords: slip bands, layered crystal 

PACS: 68.35.bj        
    

INTRODUCTION 

 

At plastic deformation of layered single crystals 

(non-homogeneously doped [1 -4]) it is revealed that the 

formation of slip lines and bands in them is sensitive to 

layer hardness. The band “splitting” on separate more 

narrow slip bands evidences about process of advanced 

deformation localization in hard layers in comparison 

with smooth ones.        

In [3-5] it is also revealed that penetration of spiral 

bands in hard layers not always leads to band splitting 

(branching) on separate more narrow ones and can be 

accompanied by only effect of bandwidth reduction. The 

general uniform decrease of band width at its penetration 

in strong layer and also small gradual decrease of band 

width as far as this penetration [1] is accepted as effect of 

bandwidth reduction. This circumstance shows on the fact 

that localization and delocalization effects of deformation 

are connected with mobility of spiral dislocations in 

transversal direction to dislocation slip plane and ability 

of spiral dislocation to multiplication by double 

transversal slip the parameters of which are strongly 

depends on doping level [6,7].   

As the formation of slip bands is the result of 

dislocation process self-organization developing in 

dislocation ensemble at meso-level [8], it is obvious that 

observable peculiarities of slip band formation in layered 

crystals should be explained within the framework  of 

kinetic approach to these phenomena. The solution of this 

task is the aim of work [1]. The equations of dislocation 

density evolution are used.    

 

DISLOCATION DENSITY. THE NARROWING 

EFFECTS OF SLIP AND BRANCHING BANDS.  

 

The equations of density evolution of pm(x, y, t) 

mobile and р, (x, y, t) immobile dislocations describing 

the formation of slip band lengthening in direction of       

x- axis and widening in direction of y-axis, have the form 

[1]:   
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Here t is time, tm —λm/u and λm are time and 

distance between dislocation multiplication acts and 

mechanism of double transversal slip of spiral 

dislocations correspondingly, u is dislocation velocity, n 

is density of dislocation sources by Frank-Reed type,  β is 

relative coefficient of dislocation immobilization in 

dipoles. 
 m

xR y,  
and R

 i
yx,  

parameters define the character 

self-organization scales of mobile and immobile 

dislocations at lengthening and widening of the band. 

They depend on kinetic coefficients defining the 

multiplication processes intensity, immobilization and 

dislocation diffusion [8]. The crystal doping strongly 

influences on kinetic coefficients [6,7] and consequently, 

on 
 m

xR y,  
and R

 i
yx,  parameters and their ratio that 

influences on slip band formation process.    

The formation of slip bands and peculiarities of their 

formation in non-homogeneously strong (layered) crystals 

are connected with dislocation self-organization process. 

The thin crystal foils АV
2ВVI

3 are obtained by gradual 

(0001) surface peeling. The films by thickness from       

10
3
 nm up to 20nm are obtained by this way.  The above 

mentioned is proved by process of growth and surface 

morphology of layered crystals on example of thin foils 

Sb2Te3 and Bi2Te3. The linear and planar defects of crystal 

structure and their electron-microscopic images are 

schematically shown in fig.1 on the base of results of 

series of experimental and theoretical works [9].   
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Fig.1.a. The foil with main defects. 

 

 1 - 6 - are heterogeneities of thickness or foil inclination; 7-18 are defects of crystal structure; 1 is decreased 

thickness region, 2 – foil taped edge, 3 is foil bend,4 -5 are pores; 6 are nano-islands on the foil; 7 is package defect; 8 

are splitted dislocations with package defect different thickness between partial dislocations; 9 is total (undissociated) 

dislocation, 10 is dislocation general type 

 

 
 

Electron image of defects 

 
Fig.1.b. The scheme of metal foil image in transmission electron microscope, designations:  

                       10 - 14 is long dislocation; 11 is invisible dislocation; 12 is double image on which the different contrast effects are       

                       shown, 13 is zigzag, 14 is dotted line; 15 are dislocation loops differently situated in foil; 16 is packing defect  

                       tetrahedron; 17 are helicoidal dislocations; 18 is the track of previous dislocation with double transversal shift (arms  

                       show on the dislocation movement direction).    

   

The forms of slip bands and regions with plates in basic plane of Sb2Te3 and Bi2Te3 crystals are experimentally 

revealed by us and scales of their decrease are observed (see fig.2 - 4).   
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Fig.2. The experimental form of slip band on surface (0001) Bi2Te3 doped by (In-Cu) forming the n-type region. The defect      

           places of slip bands are shown by circles.  

 

  

 
 

 
Fig.3. The stressed regions with plates in Sb2Te3 in basic plane (0001) in 3D-scale with decrease level.  
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Fig.4. Sb2Te3 relief with decrease scale from 150 up to 100nm and dislocation width. Designations are: 1 is dislocation width   

           10-15nm; 2 is step plateau by size 75nm; 3 is step plateau 100nm, 4 is step plateau 200 nm.  

 

 

The relief has the stepped character proving the 

process of branching self-organization in layered crystals. 

The regions of plateau and stresses between plateaux 

shown by ellipses are emphasized in fig.2 - 4.  

The following conclusions are made on the base of 

equation analysis of density dislocation evolution with 

sample surface morphology.  

CONCLUSIONS  

 

АVВVI 
foil surface including several structural levels 

by height from 150 up to 1,5nm is the one of peculiarities 

of slip bands. (0001) АVВVI
 surfaces have the stepped 

plateau-like character proving the branching self-

organization process in layered crystals by АV
2ВVI

3 type.    

__________________________________________ 
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A  three -wave  parametric interaction in metamaterials is analyzed via consideration  the negative refraction at the frequency 

of a  signal wave.  Analytic expression for  the spectral density of a backward  signal wave is obtained  in the presence of group 

velocity mismatch and group velocity dispersion. When characteristic lengths of group velocity mismatch and the group velocity 

dispersion are less than the nonlinear length the  excited pulse splits  into narrow peaks . It is shown that, at the ratio of characteristic 

lengths    ݈݈݊/݈ߥ  = 0 , the graph of the spectral density is symmetric relatively negative and positive values of phase modulation 

parameter.    

 

Keywords: Metamaterials, parametric amplification, Gaussian pulse, second order dispersion.  

PACS: 78.67.Pt; 42.65-k; 42.60,42.62.Hk 

 

INTRODUCTION  

 

The  negative index materials (NIM)  are attractive 

due to  specifics of their interaction with electromagnetic 

waves [1,2]. Different signs of refractive index 

correspond to different frequency intervals of  the  

interacting waves. Therefore the energy fluxes ( Poynting 

vector)  of the waves with a positive sign of refractive 

index will propagate in opposite direction to those with 

frequencies corresponding to a negative sign of refractive 

index. . The dynamics of three wave interaction in NIM 

was considered  for the case of second harmonic 

generation in [3]. Results obtained in [4,5] are being used 

for the developments the metamaterials in the near IR and 

visible ranges of the spectrum. Earlier we have analyzed  

the efficiency of energy conversions between two direct 

waves with respect to the energy of the backward signal 

wave for the case of signal-wave amplification in 

metamaterials [6] in  the constant intensity approximation 

(CIA) [7,8], taking into account the reverse reaction of 

excited wave on the exciting one. By employing the CIA 

we have studied the parametric interaction of optical 

waves in metamaterials under low-frequency  pumping  in  

the case of a negative index at a signal wave frequency 

[9] .The analytic expressions obtained in CIA showed , 

that the choice of the optimum parameters for the pump 

intensity, total length of the metamaterial and phase 

mismatch    will facilitate  obtaining the regimes of an 

effective amplification as well as the generation of signal 

wave. The characteristic processes observed at parametric 

interactions of running and counter waves in 

metamaterials are the transition processes [10]. Authors 

[11,12,13]  were analyzed the transition processes  by 

employment the first order dispersion theory in the 

medium with quadratic nonlinearity. In case of counter 

waves the phase matching condition is executed due to 

opposite directionality of the Poynting vector to the wave 

vector. To pump the nonlinear crystal of parametrical 

amplifier the nanosecond pulses of laser radiation are 

required. Parametric amplification of light in nonlinear 

crystals can be used for amplification the radiation being 

used with the aim of optical stochastic cooling of the 

relativistic heavy ions [14] Note that earlier we have 

employed constant intensity approximation   to study the 

stationary optical parametric amplification [15] in the 

Fabri-Perrot cavity filled with dissipative dispersive 

nonlinear medium. Here optimization of various 

parameters such as the length of the nonlinear medium, 

wave mismatch, intensities of the pump and idler waves 

were considered to maximize the signal wave gain.  

Under reduction in the pulse duration the character 

of interaction of modulated wave significantly depends on 

the dispersion properties of a medium. The frequency 

conversion for the ultra-short pulses with running wave 

was analyzed in [16]. Note that the growing interest to the 

non-stationary interaction of ultra-short pulses of light in 

nonlinear medium is related to the development of 

powerful sources of light pulses of femtosecond duration 

[1]. Earlier in [17] we were studied influence of  group 

velocity mismatch (GVM)  as well as  group velocity 

dispersion (GVD)  to the generation  of sum frequency  of 

ultra- short pulses in an external cavity under the phase 

matching and absence of  linear losses . It was shown that 

in some cases efficiency of conversion in the existence of 

GVM and GVD can be significantly higher as compared 

as to the absence of mismatch and dispersion using the 

Gaussian  pulse with quadratic phase modulation as the 

input  pulse led to compression of spectrum with increase 

in GVM and decrease in GVD. It was obtained that 

maximum energy of conversion is reached not at group 

phase matching, but at the definite characteristic lengths 

of  GVM and GVD. 

 

2. DISCUSSIONS AND RESULTS  
 

          In the present work we investigate theoretically the 

non-stationary parametric amplification in metamaterials 

in the second order dispersion theory. We study this 

mailto:Shahmardan.amirov@khazar.org
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problem assuming that the nonlinear crystal has length  ݈ , 
and its cross section is much larger than the input laser 

beam. We ignore any reflections at the crystal surfaces. 

The beam axis (which we term) is normal to the crystal 

surface, and this is the direction of the input wave vector. 

The input surface of the crystal is at𝑧 = ݈.  We assume for 

definiteness that for a parametric three-wave interaction 

in a metamaterials the medium is “left” at the frequency 
of the signal wave only. Here the pump wave is a long 

pump pulse with frequency ߱3 an idler wave is at 

frequency ߱2  and a signal wave is at the difference 

frequency ߱1 = ߱3 −߱2 .  The geometry of the problem 

is so that the  pump and idler waves enter the nonlinear 

medium from the left (𝑧 = 0) ,  but  the signal wave from 

the right (𝑧 = ݈)  hand side. In such a consideration  the 

wave vectors of all interacting waves in a metamaterial 

propagate in the positive  direction of the z axis.  During 

the wave propagation in a nonlinear medium as a result of 

the nonlinear interaction the energy exchange occurs 

between the counter wave packets of two types : direct 

waves (the idler and pump waves ) and an backward wave 

(the signal wave); this leads to the energy transfer from 

the pump and idler waves into the signal-wave energy. 

For the negative values of the dielectric  permittivity   and 

magnetic permeability  at the signal wave frequency  ߱1  

and the positive values at the frequencies ߱2 , ߱3 the 

parametrical interaction is described by the system of 

parametrically coupled   equations [1].   

   ߲߲𝑧 + 1ݑ1 ݐ߲߲ − ݅ ݃12 2ݐ2߲߲ + 𝐴1 1ߜ = 1𝐴3𝐴2∗݁݅∆𝑧ߛ݅−   

  ߲߲𝑧 + 2ݑ1 ݐ߲߲ − ݅ ݃22 2ݐ2߲߲ + 𝐴2 2ߜ = 2𝐴3𝐴1∗݁݅∆𝑧ߛ݅−     (1)                                                

  ߲߲𝑧 + 3ݑ1 ݐ߲߲ − ݅ ݃32 2ݐ2߲߲ + 𝐴3 1ߜ = 3𝐴1𝐴2݁−݅∆𝑧ߛ݅−   

 

here  𝐴݆  (j=1-3) are the corresponding complex 

amplitudes of the signal, idler and pump waves  

respectively ,    ݆ߜ  are the absorption coefficients of the 

medium at frequencies ݆߱   (j=1-3),  ݆ݑ   are the group 

velocities   of the interacting waves  , ∆= ݇1 − ݇2 − ݇3  is 

the phase mismatch between the interacting waves ,  ݆݃ =  ߲2 ݆݇/ ߲ ݆߱2 ( the 3-rd  term in the Taylor expansion 

around the central frequency ߱0: ∆߱ = ߱ −߱0   ,  ݇݊ ߱ ≅ ݇݊ ߱0 + ݇݊′ ∆߱ + 12 ݇݊′′∆߱2 + ⋯  ) is    the 

dispersion  of   group velocities  and 3ߛ , 2ߛ  , 1ߛ,   are the 

coefficients of nonlinear coupling  

 

1ߛ  == 8𝜋݂݂݁2 1ܿ2݇ 1ߝ 12߱ 2ߛ           ,  = 8𝜋݂݂݁2 2݇2ܿ2ߝ22߱  ,       

       

3ߛ   = 8𝜋݂݂݁2 3݇3ܿ2ߝ32߱  , 

 

where ݂݂݁2  is the effective quadratic susceptibility of the 

medium.   

Assuming pump wave amplitude to be constant         

( 𝐴3 = 𝐴30 =  and having put substitution (.ݐݏ݊݋ܿ

 = ݐ − 𝑧1ݑ  the set of  above equations (1) is reduced to  

  ߲߲𝑧 − ݅ ݃12 ߲2߲2 + 𝐴1(𝑧,) 1ߜ = 1𝐴30𝐴2∗(𝑧,)݁݅∆𝑧ߛ݅−  

  ߲߲𝑧 + ߥ ߲߲

− ݅ ݃22 ߲2߲2 + 𝐴2(𝑧,) 2ߜ 2𝐴30𝐴1∗(𝑧,)݁݅∆𝑧ߛ݅−=                                           (2) 

 

where   ߥ = 2ݑ/1 −  .is a group velocity mismatch 1ݑ/1

To analyze the system  ( 2 ) it is convenient to use the  

Fourier  transformation    

 𝐴1,2(𝑧,) =  𝐴1,2(𝑧,߱)݁−݅߱݀߱+∞−∞                      (3)                                 

 

Substituting (3) into (2) yields  

  ߲߲𝑧 + ݅ ݃12 ߱2 + 𝐴1(𝑧,߱) 1ߜ =  1𝐴30𝐴2∗(𝑧,߱)݁݅(߱+∆𝑧)ߛ݅−
                                                 ߲߲𝑧 + ݅ ݃22 ߱2 − ߱ߥ݅ + 𝐴2(𝑧,߱) 2ߜ =            2𝐴30𝐴1∗(𝑧,߱)݁݅(߱+∆𝑧)                          (4)ߛ݅−

 

Solving this system in the absence of  losses (݅ߜ = 0 )  gives  following expression for the amplitude of  a signal wave  

 𝐴1 ߱, 𝑧 = ߣ𝑎݊ݐ݇−ߣ1𝐴30𝐴2ߛ݅ ݈ 𝑧ߣݏ݋ܿ) ∙ ݈ߣ𝑎݊ݐ − 𝑧)݁−݇𝑧ߣ݊݅ݏ                                                 (7 ) 

 

where  λ= ݈݈݊ −1   [ 14 ݈݈݈݊݀ .  𝛼 + 1  ߱2𝜏2 − 12 ݈݈݊ ߥ݈. ߱𝜏 + ∆
3  2 − 1]1/2 ,  ݇ = ݈݈݊ −1[݅(14  𝛼 − 1  ݈݈݈݊݀ . ߱2𝜏2 − ݈݈݊ ߥ݈. ߱𝜏 + ∆

3 ) ],     𝛼 = ݃2݃1   , ݈݀ = 𝜏2݃1  , ߥ݈ = 𝜏ߥ  

 

Furthermore  we assume that the input   wave is Gaussian with a quadratic   phase modulation .  

 𝐴2 ݐ = 𝐴20݁− 22𝜏2ݐ ߛ݅−  22ݐ                                                                                               (8) 

 

 Using the Fourier transformation    

  𝐴2(߱) = 𝐴202𝜋  ݁− 22𝜏2ݐ ߛ݅−  22ݐ ݐ߱݅−݁ ∞−∞+ݐ݀                                                    (9) 

for the spectral density we obtain the following expression 



SPECTRAL DENSITY OF THE ULTRA SHORT LASER PULSES AT PARAMETRIC INTERACTION IN METAMATERIALS 

9 
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where       ݌ = ߤ  2𝜏4   andߛ = ߱𝜏 are the frequency modulation  and phase modulation  parameters respectively. 

Substituting (9) into (7)  for   spectral density of  a signal wave  𝑆1 ߱, 𝑧 = 𝐴1 ߱, 𝑧 ∙ 𝐴1∗(߱, 𝑧)  has resulted 

 𝑆1 ߱, 𝑧 = 𝐾 ݁− ߤ ݌+21 ݈ߣ𝑎݊ݐ) 𝑧ߣݏ݋ܿ∙ 𝑧ߣ݊݅ݏ− 𝑧ߣ)2( )2+(݇𝑧)2ݐ𝑎݊ ݈ߣ2                                                        (11) 

 

 where       𝐾 = 12𝐼30 𝐼20𝜏2𝑧216𝜋ߛ݊ܿ   

 

         From (11) it follows that  the shape of a spectrum of a amplified signal wave is determined not only  by the values 

of  𝑧, ݈݈݊ ߥ݈ ,     and ݈݀     but  also with their quotients 𝑧/݈݈݊  ,  ݈݈݊ ߥ݈/  ,   ݈݈݊ /݈݀  . In Fig. 1 the dependences of a spectral 

density 𝑆1(߱, 𝑧) on the phase modulation  parameter  ߱𝜏  are illustrated  at different values of  ݈݈݊ ߥ݈/   and  ݈݈݊ /݈݀   . As 

can be seen, the shape of a spectrum varies with the change in these  ratios , in particular , when ݈݈݊ ߥ݈/  = 0 (curves 1 

and 3), the  spectrum becomes symmetric relatively negative and positive values of phase modulation parameter.   

 

 
 

 

 
Fig. 1.  The reduced spectral density  𝑆1(߱, 𝑧) of a signal wave versus phase modulation  parameter  ߱𝜏 for   ݌ = 5 ,  z / ݈݈݊ = 0,5 , ∆= ݅ߜ ,0 = 0  :  1 − ߥ݈/݈݈݊  = ݈݈݊/݈݀ = 0 ;    2 − ߥ݈/݈݈݊  =3,   ݈݈݊/݈݀ = 0 ;    3 − ߥ݈/݈݈݊  =0, ݈݈݊/݈݀ = 3 ;  

  4 − ߥ݈/݈݈݊  = ݈݈݊/݈݀ = 3 

  
In Fig. 2  a spectral density is given as a function of  phase modulation  at different values of  intensity  of idler wave. As can 

be seen at the same values of input  intensity (curves 1 and 2)  increase in frequency modulation leads to increase in spectral density, 

however at equal frequency modulations increase in intensity decreases the spectral density of an amplified signal wave (curves 1 

and 3).    

 

 
 

                                                                                          
Fig. 2.  The reduced spectral density  𝑆1(߱, 𝑧) of a signal wave as  a function of  phase modulation  parameter  ߱𝜏 for z / ݈݈݊ = 0,7 (curves 1 and 2 ) and   z/݈݈݊ = 1 (curve 3) ,  ݌ = 0(curve 2) , ݌ = 5 (curves 1 and 3) and  ∆= ݅ߜ ,0 = 0 

 

Effect of phase modulation of idler wave onto the spectral density of amplified signal wave also is demonstrated in 

Fig .3.  
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Fig. 3.  Dependences of  a spectral density  𝑆1(߱, 𝑧) of a signal wave on the phase modulation parameter ߱𝜏 for   ݌ = 0 (curve 1), ݌ = 5 (curves 2 − 4)  and  z / ݈݈݊ = 0,5 , ∆= ݅ߜ ,0 = 0 at different values of ratios of characteristic lengths: 1 − ߥ݈/݈݈݊  

= ݈݈݊/݈݀ = 0 ;    2 − ߥ݈/݈݈݊  = ݈݈݊/݈݀ = 0 ;  3 − ߥ݈/݈݈݊  = ݈݈݊/݈݀ = 3 ; 4 − ߥ݈/݈݈݊  = ݈݈݊/݈݀ = 10 ;       

    

        From Fig. 3 it is seen that, a spectrum is symmetric 

when ݈݈݊ ߥ݈/  = 0  independently on the value of ݈݈݊ /݈݀    .  

Existence of phase modulation leads to increase in the 

width of spectrum of a signal wave. At larger values of a 

frequency modulation (ߛ𝜏2 ≫ 1 )  the splitting up occurs 

in the spectral density  of  amplified pulse (curve 4) . All 

curves in Fig. 1-3 are plotted for  the same signs of the 

coefficients of group velocity dispersions. Note that when ݃1 = ݃2,  amplification of signal wave occurs without 

dispersion of group velocities. The graphs are plotted for 

the case when   ݃2/݃1 = 3.  

 

CONCLUSION 

From above mentioned one can conclude that  

parametric amplification of ultra-short pulses in 

metamaterial in the  second order dispersion theory is 

affected by the influence of  group velocity mismatch as 

well as the  group velocity delay .  

Here an  analytical expressions for the spectral 

density of  a signal wave was derived  . We showed that 

the spectral density of a ultra-short pulse  wave  is 

affected by the ratios  of  characteristic lengths. When  ݈݈݊ ߥ݈/  = 0 , the shape of a graph of  the spectral density  

becomes symmetric relatively negative and  positive 

values of phase modulation parameters and  has  a  

maximum  at positive values of phase modulation when  ݈݈݊ /݈݀ = 0 .  

For the ratios of characteristic  lengths  differ from 

zero maxima of spectral density   are  obtained not  at  

zero  ߱𝜏  but at different values of this parameter.  
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INTRODUCTION 

 

The Standard Model (SM), based on a gauge theory 

with a symmetry group )1()2()3( LC USUSU  , 

quantitatively describes the physics of strong, 

electromagnetic, and weak interactions between leptons 

and quarks [1, 2]. In physics of elementary particles, no 

experiments have yet been observed, the results of which 

do not agree with the SM. Recently opened nedos-

tayuschy brick in the building SM. This is a scalar Higgs 

boson, discoveries by ATLAS and CMS collaborations 

[3, 4] in the Large Hadron Collider (LHC). The discovery 

of the Higgs boson has experimentally confirmed the 

theoretically predicted mechanism of mass generation of 

fundamental particles – the mechanism of spontaneous 

Breit-Englert-Higgs symmetry breaking [5]. 

In the first experiments conducted in the LHC, the 

main properties of this particle are established: the Higgs 

boson is a scalar particle with a positive parity, a 

nonvanishing vacuum value of about 125 GeV, 

interacting with W - and 0Z -bosons with a constant 

proportional to their masses. With the discovery of Higgs 

boson, SM entered a new stage in the study of the 

properties of fundamental interactions of elementary 

particles. In this connection, interest in various channels 

for the production and decay of the Higgs boson has 

greatly increased [6-12]. 

We note that the collision of high-energy electrons 

and positrons is an effective method for studying the 

mechanisms of interaction of elementary particles. This is 

mainly due to two reasons. First, the interaction of 

electrons and positrons is described by the electroweak 

theory, and therefore the results obtained are well 

interpreted. Secondly, electrons and positrons do not 

participate in strong interactions, as a result of which the 

background conditions of experiments are substantially 

improved in comparison with the studies carried out with 

beams of hadrons. At present, electron-positron colliders 

of high energies are designed to study the physical 

properties of Higgs bosons: ILC, CLIC, FCC [13, 14], as 

well as muon colliders [15]. 

In a recent paper [10], we investigated the 

production of the Higgs boson and light fermion pair in 

arbitrarily polarized electron-positron collisions. In this 

paper we discuss the processes of the joint production of a 

Higgs boson and a longitudinally polarized heavy fermion 

pair in arbitrarily polarized electron-positron beams: 

 

                      ,ffHee SM                     (1) 

 

where ff  it can be a lepton  -pair or a ,-bb  tt -

quark pair 

 

1. Calculation of the square of the matrix element 
 

We assume that in a 


ee -collision a heavy 

fermion pair is produced by an electromagnetic 

mechanism, and then a scalar Higgs boson SМH  is 

braked by the fermion and antifermion (see Fig. 1, where 

Feynman diagrams are illustrated, in the diagrams,           

4-particle impulses are written in parentheses).  

 

 
 

Fig. 1. Feynman diagrams of the process ffHee SM
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Note that this reaction can occur due to a weak mechanism ffHZee  
SM

*)( , however, this 

mechanism is not considered here. 

The following matrix element corresponds to the diagrams given: 

 

 ,)]()([ 12

2

SM
 Jpupg

s

Qe
M

ffH

f

fi   (2) 

where  

 )(
)(

ˆˆ

)(

ˆˆ
)( 222

2

2

22

1

1

1 q
mkq

mkq

mkq

mkq
quJ f

f

f

f

f

f  




















  (3) 

 

is fermionic electromagnetic current, 2
21

2 )( ppps   – the square of the total energy of the electron and positron 

in the center of mass system, fm  and fQ  are the mass and electric charge of the fermion correspondingly, 
ffH SM

g  is 

the constant of the Higgs interaction of the boson with the fermion pair. According to the SM, this constant is 

proportional to the mass of the fermion 

 
21][

SM ff

f

ffH Gm
m

g 


. 

  

Here 246  GeV is the vacuum value of the Higgs bosonic field, FG is the Fermi constant of weak interactions. 

The square of the matrix element (2) is expressed by the formula 

 

  HLg
s

Qe
M ffH

f

fi SM

2

2

24
2

 . (4) 

 

Here L  and H  are the conserved lepton and fermionic tensors 

 

 0  pHpHpLpL . 

  

As a result, in the center-of-mass system, only the spatial components of these tensors contribute to the cross 

section: 

 )3,2,1,(  rmHLHL mrmr . 

  

The tensor mrL  can easily be calculated on the basis of the matrix element (2), and in the case of annihilation of 

an arbitrarily polarized ee -pair, the structure has the following structure [16]: 

 

 )],)(()())(1[(2 2121211221 rmmrmrrmsmrsrmmrmr NNNiNNsL  


 (5) 

 

where 1  and 2  ( 1


 and 2


)   are the helicities (transverse components of the spin vectors) of the electron and the 

positron, N


  is a unit vector directed along the momentum of the electron. 

As for the fermionic tensor mrH , we note that in the general case it is cumbersome and is therefore not given 

here. However, at high energies of the colliding particles ( 1s  TeV), the ratio 
s

m f
2

 can be neglected in comparison 

with unity (for example, for the heaviest t -quark with a mass of 173.1 GeV, this ratio for 1s  TeV is 

103,0
10

1,173
2

3









). Then, neglecting the terms proportional to 
s

m f
2

 and 
s

M
SMH

2

, we have a simple expression for 

the fermionic tensor (the fermions are longitudinally polarized): 

 

 ],)())(1[(
2

2121

12

2

smrsrmmr

H

mr nhhinnhh
x

x
H    (6) 
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where )1)(1( 2112 xxx  , 
s

E
x 1

1

2
 , 

s

E
x 2

2

2
  and 

s

E
x H

H

2
  are the scaling energies of the fermion, 

antifermion and Higgs boson, respectively, 1h  and 2h  are the helicities of the fermion and antifermion, n


  is the unit 

vector along the Higgs momentum of the boson. 

The product of the lepton and fermion tensors can be represented in the form: 

 

  53223431133332112212211 )()()()(
2

1  LLLLLLLLLHL mrmr
 

 ,)()()(
2

)( 91331832237211262112   LLiLLiLL
i

LL  (7) 

where the so-called correlation functions are introduced )91( aa , by means of relations: 

 

 

).(
2

),(
2

),(

),(
2

1
),(

2

1
),(

2

1

,),(
2

1
,

133193223821127

211263223531134

3331122222111

HH
i

HH
i

HHi

HHHHHH

HHHHH













 (8) 

 

We use the coordinate system in which the OXZ plane coincides with the plane of particle production 

021  kqq


 and introduce the angles  ,  and  , where    is the polar angle between the Z axis and the 

direction of the electron beam,   the azimuth angle between the production plane and the plane determined by the Z 

axis and the beam e ,   is the azimuth angle between the production planes and transverse polarization of the 

electron. In this system, the components of the vectors N


, 1


 and 2


 is determined by expressions 

 

 
).cossin,sincoscossincos,sincoscossinsin(

),cos,sinsin,cos(sin

21 








N

 (9) 

 

Then for the product of tensors mrmr HL   we have: 

 









 

521

214

2

21

2

213

2

21

2

21

2

2

21

2

21

1

2

21

2

2121

]2sincossin22cossin2(sin

sin2sin)1[()]2sin2coscos22cos2sin

)cos1((2cossin)1[(]2cossinsin)1[(

)]2sinsinsin22cos2cos)cos1((2cossin)1[(

]2cossin)cos1)(1[(
2

1
)1(2








hhsHL mrmr

 






 62121 ]2sinsinsin22coscos2(sincos2sin)1([   

)].sin(cossin2)[cos)((2 9872121   hhs                       (10) 

 

2. Differential cross section of the reaction ffHee SM  

 

Based on the general rules for the differential cross section of the process ffHee  
SM , the 

following expression is obtained 

 

  AffH

CfKED
hhg

s

NQ

dxdxddd

d
SM








)1)[(1{(

256)(cos
2121

2

3

22

21

5
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         }))(()]2sin2(cos 212121 DCB hh   .                      (11) 

 

Here 

 

),sin(cossin2cos

),sin(cossin2)2cos2(sincos2

),cos(sin2sin)2sin2)(coscos1(
2

1
sin

),cos(sin2sin)2sin2(cossin)cos1(
2

1

987

6542

6542

2

31

2

65432

2

1

2



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










 



D

C

B

A

 (12) 

 

where CN   is the color factor (in the case of the production of a lepton pair 1CN , and in the case of the production 

of quarks 3CN ). 

The correlation functions )91( aa  in (12) depend on the scaling energies 1x  and 2x  ( 212 xxxH  ) 

and they are easily determined on the basis of the fermionic tensor (6): 
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 (13) 

 

As can be seen, because of the orthogonality of the Y axis to the particle production plane, the correlation 

functions ,5  6  and 9  vanish. Under the condition 1
2


s

M H  and 1

2


s

m f
 the distribution of particles in the 

Dalitz diagram is determined by the laws of conservation of energy and momentum: 

 

 .0,2 221121  nxnxnxxxx HH


  

The boundaries of the allowed domain are determined by the equations )( kjixxx jik  . Direct 

,21 xx   Hxx 1  and Hxx 2  divide the Dalitz diagram into six different regions. In the region ( ji; ) the scaling 

energies of the particles ix  and jx  satisfy the conditions 

 ).( kjixxx kji    

We can direct the axis Z  along the most energetic particle and select the axis X  so that the x - projection of the 

momentum of the second more energetic particle becomes positive. Then the following areas of the Dalitz diagram are 

obtained. 

Ia (3; 1). The axis Z  is directed along the momentum of a more energetic Higgs boson, and the momentum of the 

second energetic fermion has a positive x -projection (see Fig. 2a) 

 

 ).,0,(),,0,(),1,0,0( 3232231311 csncsnn 


 

  

Similarly we have the reduced regions: 

 

 Iɛ(3; 2): ).,0,(),,0,(),1,0,0( 3232231311 csncsnn 


  

 IIɚ(1; 3): );,0,(),,0,(),1,0,0( 1313121221 csncsnn 


  

 IIɛ(1; 2): );,0,(),,0,(),1,0,0( 1313121221 csncsnn 


  

 IIIɚ(2; 3): );,0,(),,0,(),1,0,0( 2323212112 csncsnn 


  

 IIIɛ(2; 1): ).,0,(),,0,(),1,0,0( 2323212112 csncsnn 

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Here we have introduced the notation ijijs sin  and ijijc cos , where ij  the angle between the directions of 

the particle momenta i  and j . These angles depend on the scaling energies of the particles 

 

 .
)1(2

1cos,
)1)(1)(1(2

sin
21

ji

ji

ij

ji

H

ij
xx

xx

xx

xxx 



   (14) 

Using these relations, we can easily determine the correlation functions in each region of the Dalitz diagram. Here we 

give the correlation functions in the coordinate system Ia (Ib), where the momentum of the more energetic Higgs boson is 

directed along the axis Z , and the second energetic fermion (antifermion) in the production plane has a positive 

momentum projection 01 xq  ( 02 xq ): 
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Fig. 2. Coordinate systems Ia, IIa and IIIa 

 

Integrating the cross section (11) along the azimuthal angle  , we obtain the particle distribution over the angles 

  and   in the case of longitudinally polarized 


ee - and ff -pars 
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where the coefficients of the angular distributions of particles: 
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It follows from the formula of the differential cross section (16) that the electron and the positron must have 

opposite helicities 121    (the electron is left, and the positron is right – 
RLee , or the electron is right, and the 

positron is left – 
LRee ), while the helicities of the fermion and antifermion must be the same – 121  hh  (fermion 

and antifermion right – RR ff  or left – LL ff ). Thus, four spiral sections correspond to the process 

ffHee  
SM : 

1) electron, fermion and antifermion are left polarized, and positron is right: 
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2) the electron, fermion and antifermion are right polarized, and the positron is left: 
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3) the electron is polarized to the left, and the positron, fermion, and antifermion are right: 
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4) the electron is polarized right, and the positron, fermion and antifermion are left: 
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It is of interest to compare the cross sections of processes gqqee    and SMHqqee    in 

the case of longitudinally polarized particles, where g  the gluon emitted by the quark and antiquark. Calculations 

show that in the process gqqee    the quark and antiquark must possess opposite helicities ( RLqq  or 

LRqq ) [16]. In the process SMHqqee    considered here, the quark and antiquark should be polarized 

either left ( LLqq ) or right ( RRqq ) 

We estimate the coefficients of the angular distributions )8,7,4,2,1( ii  in the coordinate system IIIa, 

where the momentum of the antifermion is oriented along the Z axis, and the momentum of Higgs boson in the 

production plane has a positive x-projection (Fig. 2c). Using the expressions for the correlation functions given in the 

Appendix, for these coefficients we have the expressions: 
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Fig.3. Dependence of the angular distribution coefficients on 2x  at 9,01 x  in the reaction 
  SMHee . 
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 Fig. 3 shows the dependence of the angular distribution coefficients on the scaling energy 2x  for a fixed 

9,01 x  in process   SMHee . As can be seen, the coefficients 1  and 8  are negative and 

decrease 2x  slowly with increasing. The coefficient 2  is positive and increases 2x  slowly with increasing. As for the 

coefficients 4  and 7 , we note that at the beginning of the spectrum the coefficient 4  ( 7 ) is negative (positive) 

and with increasing 2x  it monotonically increases (decreases) and vanishes, and then becomes positive (negative). 

Summing (averaging) the differential cross section (16) over the polarization states of the anti- fermion (positron) 

and integrating with respect to the angle  , we have 
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It follows that if the electron is longitudinally polarized, then in the process ffHee SM    the fermion can 

acquire longitudinal polarization. The degree of longitudinal polarization of the fermion is determined in the standard 

manner 
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The degree of longitudinal polarization (19) can be conveniently investigated in the process 
  SMHee , since by investigating the decay channels in ,      

K  

experiments it is possible to determine the degree of longitudinal polarization of the  -lepton. 

 Fig. 4 illustrates the angular dependence of the degree of longitudinal polarization of a  -lepton for 11   a 

fixed 9,01 x , 6,02 x  and 9,01 x , 8,02 x . As can be seen, with increasing angle  , the degree of longitudinal 

polarization decreases and reaches a minimum at the end of the angular spectrum. The growth of the scaling energy 2x  

leads to a decrease in the degree of longitudinal polarization of the  -lepton. 
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Fig. 4. Angular dependence of the degree of longitudinal polarization of 
 -lepton 

 

 Fig. 5 shows the dependence of the degree of longitudinal polarization of  -lepton on the change 2x  for a fixed 

energy 9,01 x  and for different angles   of emission of particles. When the degree 900    of longitudinal 

polarization it is positive, and for  18090   it is negative. 

Now consider the particle distribution over the angles θ and  . To do this, we integrate the cross section (11) along 

the azimuthal angle   of the (


ee -pair is polarized transversely): 
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Here )cos,,( 21 xxA   is the transverse spin asymmetry due to the transverse polarizations of the 


ee -pair and 

determined by the relation 
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Fig. 5.  The dependence of the degree of longitudinal polarization of a 
 -lepton on the change 2x  

at a fixed energy 9,01 x  and different angles   of emission of particles. 

 

 Fig. 6 illustrates the angular dependence of the transverse spin asymmetry in the process 
  SMHee  for a fixed 1x =0,95, 2x =0,55 and 2x =0,65. As the angle   increases, the degree of 

transverse spin asymmetry increases and reaches a maximum at 
90 , and a further increase of the angle leads 

to a decrease in the asymmetry. With increasing scaling energy 2x , the transverse spin asymmetry decreases. 
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Fig. 6. Angular dependence of the transverse spin asymmetry in the process 
  SMHee . 

 

Integrating the cross section (20) over the angles   and  , we obtain the energy spectrum of the particles, which 
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coincides with the result of [17] 
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 Fig. shows the dependence of the differential cross section (22) on the variable 2x  for fixed 9,01 x  and 95,0 . 

As the variable 2x  increases, the differential cross section decreases monotonically, and the growth of the 
 -lepton 

energy 1x  leads to an increase in the cross section. 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

d


/d
x

1
d

x
2
, 

fb
a

r
n

x2

x1=0,95

x1=0,9

 

Fig. 7. The dependence of the differential cross section of the process 
  SMHee from a variable 2x  for a fixed  

           9,01 x  and 0,95 

 

We introduce new variables ),,,max( 211 HxxxTT   2T  and 3T  so that the inequalities 

2321 2 TTTTTT   are satisfied. We select the axis Z  along the momentum of the most energetic particle 

and carry out integration over the variable 2T  for a fixed T  one. As a result, we find the cross section 
dT

d
 of the 

process ffHee SM  
 as a function T . For TxH   and 21 Tx   and (or 22 Tx  ) the cross section is: 
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For  Tx 1  and 2TxH   (or for Tx 2  and 2TxH  ) we have a section: 
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If, however, Tx 1  and 22 Tx   (or if Tx 2  and 21 Tx  ), then the cross section 
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Adding the expressions (23)-(25), we obtain a section characterizing the distribution of the most energetic particle 

with respect to the variable T : 
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 Fig. 8 shows the dependence of the reaction 
  SMHee  cross section on the variable T  for 

1s  TeV and 778,1m  GeV. An increase in the variable T  from 0,725 to 0,9 leads to a monotonic increase in 

the cross section of the reaction from 0,012 fbarn to 0,448 fbarn. 
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Fig. 8. The dependence of the cross section of the process   SMHee  on the variable T . 

 

4. The production of the Higgs bosons of the MSSM and the fermion pair 

 

Along with SM, the Minimal Supersymmetric Standard Model (MSSM) [7, 18] is widely discussed in the 

literature, where two doublets of a complex scalar field with hypercharges -1 and +1 are introduced: 
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After the spontaneous breaking of the MSSM, five Higgs particles appear: CP-even h - and H -bosons, CP-odd 

A -boson and charged H - and H -bosons. In high-energy electron-positron collisions, in addition to the process 

ffHee SM   , there can also occur reactions of the production of Higgs bosons MSSM and the fermion 

pair: ffHee   , ffhee  
 and ffAee  

. According to the MSSM, the 

interaction constants of these bosons with the fermion pair are determined by the expressions [18]: 
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where   and   are the MSSM parameters. Consequently, the differential cross sections of the processes 

 
ee ffH   and ffhee  

 will differ from the reaction ffHee SM    cross 

section by the presence of an additional factor 



sin

sin
 and 




sin

cos
. As for the process ffAee   , we note 

that, because of the pseudoscalarity of the A -boson, the expression for the fermion current (3) is replaced by the current: 
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Note that this current also leads to the results obtained earlier for the reaction ffHee SM  
. Here, 

too, it is necessary to replace the interaction constant ffHSM
g  by the constant ffAg . 

  

CONCLUSION 
 

We discussed the processes production of a Higgs boson SMH  (boson MSSM AhH ,, ) and a heavy fermion 


ee -pair in annihilation of an arbitrarily polarized pair: ffHee SM  

, ffHee  
, 

ffhee  
, ffAee  

. Analytical expressions are obtained for differential cross sections, 

angular and spin correlations. The features of the behavior of the cross sections, angular and spin correlations are 

investigated as a function of the energies and emission angles of the particles. The results are illustrated by graphs. 
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APPENDIX 
 

Here we give the expressions for the correlation functions in coordinate systems IIa,b and IIIa, b 

1) In systems IIa and IIb: 
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2) In systems IIIa and IIIb: 
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The upper sign corresponds to systems IIa and IIIa, and the lower sign corresponds to IIb and IIIb. 
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In the framework of the Minimal Supersymmetric Standard Model we investigated the decay channels of Higgs bosons 


HAhH ,),(  into arbitrarily polarized fermions: ffAhH ),( , ffH 

, 
 WffAH )( , .  WffH

Analytical expressions for the widths of these decays are obtained, the transverse spin asymmetries and the degree of longitudinal 

polarization of fermion are determined. The dependence of the asymmetries and the widths of the decays on the mass of the Higgs 

bosons are studied. 

 

Keywords: Minimal Supersymmetric Standard Model, Higgs boson, fermion pair, decay width, helicity. 

PACS: 12.15-у, 12.15 Mm, 14.70 ɇр, 14.80 Bn. 

 

1.  INTRODUCTION 
 

Standard model (SM) interactions of elementary 

particles is a combination theory of electroweak 

interactions based on the symmetry group 

)()(  YL USU  and Quantum Chromodynamics (QCD), 

based on a gauge group )(CSU . The Group 

)()(  YL USU has satisfactorily describes electroweak 

interactions leptons, quarks and gauge bosons [1-3] and 

QCD-strong interactions of quarks and gluons [4, 5]. 

The amazing feature of CM is the phenomenon of 

spontaneous electroweak symmetry group violations as a 

result of which gauge bosons, the charged leptons and 

quarks are acquire mass [1-3]. A doublet of scalar fields 











 




  is introduced into the theory, the neutral 

component of which has a vacuum value different from 

zero. As a result of the electroweak group 

)()(  YL USU  spontaneously broken to electromagnetic 

symmetry group ).(QU  Three of the four components of 

a scalar field   absorbed 
W - и 

Z -vector bosons. The 

fourth component neutral condition of the scalar field is 

the Higgs boson SɆH . 

In various laboratories in the world carried out 

searches for Higgs bosons. Discover the Higgs boson 

SɆH  and study its physical properties was one of the 

main tasks of the large Hadron Collider (LHC). Finally, in 

2012 year a scalar Higgs boson has been discovered at the 

LHC collider by the ATLAS and CMS collaborations 

[6.7] (see also reviews [8-10]), and this began a new 

phase of research to determine the nature of this particle.  

It should be noted that along with SM, widely 

discussed in the literature the Minimal Supersymmetric 

Standard Model (MSSM) [11-13]. Here, in contrast to SM 

injected two doublet complex scalar field with hyper- 

charges-1 and 1 

 












1

0

1

1 ɇ
ɇ

 ,   











0

2

2

2 ɇ
ɇ

 . 

 

To obtain the physical fields of the Higgs bosons, 

the fields 1  and 2  are represented in the form 

 

,
2

1

1

0

1

0
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


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

 



H

iPɇ
       

   













0

2

0

22

2

2
2

1

iPH

H


 . 

 

Here 
0

2

0

2

0

1

0

1 ,,, РɇРɇ  are fields that describe the 

excitation system on vacuum states 
11

2

1    and

22
2

1   . 

Mixing fields 
ɇ  and 

ɇ , get ɋɊ-even Higgs 

bosons H  and h  (mixing angle ): 

 





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






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



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


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


0

2

0

1

cossin

sincos

H

H

h

ɇ



. 

Similarly, mixing the fields 
Р  and 

Р , and also 


ɇ  and 

ɇ , we obtain a CP-odd Higgs boson A  and 

charged Higgs bosons 
ɇ and 

ɇ (mixing angle  ): 
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
0
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0
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P
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, 

 























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










2

1

cossin

sincos

H

H

H

G




. 

 


G  And 
G  − neutral and charged Goldstone bosons. 

Consequently, after the spontaneous symmetry 

breaking, five Higgs particles appear in the MSSM: CP- 

even h - and H -bosons, ɋɊ-odd А -bison and charged 
ɇ - and 

ɇ -bosons. 

In the MSSM, the Higgs sector is characterized by 

six parameters ,,,, 
HAHh MMMM  and  . Of these, 
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only two parameters are free, such parameters usually 

take the mass AM  and the parameter tg . This 

parameter is equal to the ratio 







 and varies within 

,5.35tan1 
b

t

m

m


 
 

where  .tm
 

GeV and  .bm  GeV are the 

masses of t - and b -quarks. 

The masses of CP- odd h - and H -bosons (charged 
ɇ -bosons) are expressed by the masses АɆ  and       

ZɆ ( АɆ and WɆ ): 

  .,]2cos4[
2

1 222222222222

)( WAHZAZAZAHh MMMMMMMMMM  

  

Figure 1 shows the dependence of the masses h - , 

H - and 
ɇ -bosons as a function of the mass of the 

pseudoscalar А -boson at a value of the parameter 

tg  and masses  .ZM
 
GeV,  .WM

GeV. With an increase  the mass of the А -boson from 

100 GeV tо 400 GeV, the mass of the light h -boson 

varies from 60 GeV to 72.255 GeV while the masses  of 

the )( 
HH -bosons vary from 121.216 (128.303) GeV 

up to 403.85 (407.987) GeV. 

 

 
 

Fig.1. The dependence of the masses of the h -, H - and ɇ -

bosons on the mass АɆ  

 

The mixing angles of the fields   and  are related 

by: 

22

22

2tan2tan
ZA

ZA

MM

MM




  ,  





  0

2


. 

 

We note that the decay channels of the standard 

Higgs boson have been studied in a number of works [2, 

14-18]. In this paper we have studied the decays of the 

Higgs bosons of MSSM through channels:  

 

ffАɇh );( ,                            (1) 

 

                  
ffH 

,                             (2) 

 

               
 WbtAH )( ,                        (3) 

 

                 
  Wbbɇ ,                        (4) 

 

Here )( ffff   is a fermion (lepton or quark) pair. 

These channels of Higgs bosons decay were previously 

considered in a number of papers (see [11] and there 

references to primary sources). However, in these papers 

the polarization states of fermions are not considered. Our 

analysis shows that the study of the polarization 

characteristics of fermions in these decays can provide 

valuable information on the nature of Higgs bosons. We 

obtained analytical expressions for the width of the 

reduced decays with allowance for arbitrary polarization 

of the fermions, the dependence of the decay width and 

spin asymmetries on the mass of the Higgs bosons was 

studied. 

 

2. THE DECAYS OF ffАНh );(  

 
The Feynman diagram of the decay of a neutral 

Higgs boson into a fermion pair is shown in Fig. 2, where 

four impulses and the polarization vectors of the particles 

are written in parentheses. 

 

 
 

Fig.2. The Feynman diagram of the decay ffАɇh );(  

 

MSSM claims that the h - and H -bosons are ɋɊ -
even particles, аnd the А -boson ɋɊ is odd. In this 

connection, we consider the decay of a boson   whose 

interaction with the fermion pair simultaneously contains 

the CP - even and odd components: 

 

 

 ,)()],())(,([)( pspbaspugffɆ ffff                                           (5) 
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where ffg  is the interaction constant of the Ф-boson 

with the fermion pair, a  and b  are some constant 

parameters,, and for a and b  we obtain the decay 

amplitudes of the CP-even h - and H -bosons, and for 

a  and b  it is the decay amplitude of the 

pseudoscalar А -boson, )( p
 
is the wave function of the   

Ф boson normalized to unity. 

The width of the decay of the  Ф boson into a 

fermion pair is proportional to the square of the matrix 

element (5): 

 








Mg

N
ffM

Md

d
ff

fCf 2

2

2

2

21

128
)(

64

),(










  )](1[)])((2)(1[{ 21
2

2121
22 


bnna f  

])},[()Im()]()[()Re( **
  


nabnnab ff                                               (6) 

 

where CN  is the color factor ( CN  for the production 

of the lepton pair and CN  for the production of the 

quark pair), fm  and M  are the fermion and Ф boson 

masses, 
2

2

41



M

m f

f  is the fermion velocity , n


 – is 

the unit vector along the fermion momentum, 


 and 


 

– are unit vectors directed along the spins of the fermion 

and antifermion in their rest systems. 

Suppose that the fermion pair is transversely 

polarized (  


, 
22 


 , 


 and 


 are the 

transverse components of the spin vectors of the fermion 

pair): 

 

                   
0)()( 21  


nn . 

 

 In this case, the width of the decay ff   is: 
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baM
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d
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ffC f

                                         (7) 

 

From this formula it follows that if the transverse 

polarizations of the fermion pair are parallel  


, 

then the decay of the Φ-boson can occur only due to the 

CP-even interaction: 

 

 .~
)1( 3221

fa
d

d








                                                                            (8) 

 

The decay of the Ф boson due to CP-odd interaction  

can occur only for antiparallel transverse polarizations of 

the fermion pair  


: 

 

 .~
)1( 221

fb
d

d








                                       

 

If the angle between the transverse polarization 

vectors of the fermion pair 


 and 


 is the  , then the 

decay width of the а ff   takes the form: 

 

.}sin)Im(2)cos1()cos1({
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2
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(10) 

 

In this case, two types of transverse spin asymmetries can arise: 
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ba
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dddd

dddd
A





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






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The transverse spin asymmetry А  differs from zero 

only in the case when the Φ-boson is a mixture of the CP-

even and odd states, and this asymmetry can reach values 

of the order of 1 if the parameters  а  and b  are 

approximately the same. For a pure CP state, one of the 

parameters а  and b  is zero, then the transverse spin 

asymmetry А  will be either +1 or -1, depending on 

whether the Higgs boson is a CP-even or an odd particle. 

Now suppose that the fermion pair is longitudinally 

polarized: 
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11 )(  


n ,     )(


n ,  
2121 )(  


, 

 

where   and   are the helicities of the fermion and  

 

antifermion. 

The total width of the decay of the Ф boson into a 
longitudinally polarized fermionic pair is: 

   }.)Re(2)1]({[
32

, 21

*

21

2222

21 



   ffff

fC
abbaMg

N
        (13) 

 

It follows that in the decay of the Ф-boson to the 

fermionic pair of the helicity of the fermion and 

antifermion must be the same (
RR ff

 
or 

LL ff , where Rf  and Lf are right-handed and 

left-handed polarized fermions). This is due to the 

conservation of the total angular momentum in the decay 

ff  . We determine the degree of longitudinal 

polarization of the fermion in the decay of ff   

by formula  

 

222

*
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)1()1(

)1()1(

ba

ab
P

f

f

f





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






.  (14) 

 

As can be seen, the degree of longitudinal 

polarization of the fermion, as well as the transverse spin 

asymmetries А  and А , is a source of information about 

the interference of the ɋɊ- even and ɋɊ-odd amplitudes 

in the decay ff  . 

The total width of the decay ff  , summed 

over the spin states of the fermion pair, is given by: 

 

][
8

)(
2222

bagM
N

ff fff

fC   



. (15) 

 

According to the MSSM, the coupling constants of 

the SɆH , h , H  and А  bosons with a fermion pair are 

determined by the expressions given in Table 1. 

 
Table1.  

The Higgs coupling constants of bosons with a fermion pair in 

the MSSM 
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
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
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mt  


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We note that in the table the   is the vacuum value 

of the standard Higgs boson field 

 

246)2( 21  
FG GeV, 

 

FG  is the Fermi constant of weak interactions. 

As follows from the decay width (15) and from 

Table 1, with increasing mass of the Higgs boson M

and fermion fm  the probability of ff   decay 

increases. Because of the smallness of the masses of the 

electron, muon, u -, d - and s -quarks, the decays 

  ee ,
   , uu  ,

dd   and ss   are suppressed. Higgs 

bosons h , H  and А can decay into a pair of   - 

leptons, and a pair of  cc -, bb -quarks. The heavier H  

and А -bosons can decay into a pair of t  -quarks. 

  Fig. 3 shows the dependence of the decay widths 

)( ttH   and )( ttA  on the mass of the Higgs 

boson at a parameter 3tg  and 2.173tm  GeV . 

As noted above, with increasing mass of the Higgs boson, 

the ttH   decay widths increase. In addition, as seen 

from Fig.3, the width of the decay ttА   

predominates over the width of the decay ttɇ  . 

 

 
 

Fig. 3. The dependence of the decay widths ttH  and ttА
on the mass M  
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3. THE DECAY OF ffН 
 

 

The charged Higgs boson can decay into a lepton 

pair llH   (
llH   ) or a quark pair 

btH   ( tbH  ). The Feynman diagram of the 

decay ffɇ   is analogous to the diagram shown 

in Fig.2. 

According to the MSSM, the matrix element of the 

decay ffɇ    can be represented in the form: 
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

,         (16) 

 

here ffU   is an element of the Kobayashi-Maskawa matrix in the case of the creation of a quark pair )( qqff  , and 

at the production of a lepton pair ffU . 

For the Higgs decay width of the boson on the polarized fermionic pair ffɇ   the following expression is 

obtained: 
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The notations are introduced: 
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In the case of the production of a transversely polarized fermion pair   )()( 


nn ,   )()( 


nn  and 

the decay width will take the form: 
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We determine the transverse spin asymmetry in the decay ffɇ   by the relation: 
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(19) 

 

When a longitudinally polarized fermion pair is produced in the decay of ffɇ   the total probability is 

expressed by the formula  
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We determine the degrees of longitudinal polarization of the t -quark in the decay btH   by the formula 

(with respect to the polarizations b -quark is summed) 

 

btbtbt

tbtbt

t
rrrrtgrctgr

rrrtgrctgr
P

4)1]([

4)1(][
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)1()1(
222

222
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






.                         (21) 

 

 Figure 4 shows the dependence of the transverse spin asymmetry (19) on the mass of the Higgs boson in the 

decay of btH   at  .tm  GeV ,  .bm  GeV and tg . 

 

 
 

Fig. 4.The dependence of the transverse spin asymmetry on the mass 
H

M  in the decay  btH  . 

 

Figure 5 illustrates the dependence of the degree of longitudinal polarization of the t -quark in the decay

btH   on the mass of the Higgs boson at tg  and tg . 

Note that using the ATLAS detector in the process of producing a tt -quark pair in proton-proton collisions at 

s TeV the degree of longitudinal polarization of the t -quark was measured [19].  

 

 
 

Fig. 5. The dependence of the degree of longitudinal polarization of the t -quark in the decay btH 
 on the mass 

H
M

 
 

The total decay width btH  , summed over the polarization states of the quarks, is: 

 

btbtH
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Fig. 6 illustrates the dependence of the total width of the decay btH 
 on the Higgs mass of the boson 

H
M  at  

tg  and tg . 

As can be seen, with increasing mass of the Higgs boson, the decay width increases, an increase in the parameter 

tg
 
also leads to an increase in the width of the decay. 

 
 

                         Fig. 6. Dependence of the decay width )( btH    оn the mass of 
H

M
 

 

4. THE DECAY OF 
 WbtAH )(

 
 

If the masses of the heavier ɇ and А bosons are slightly less than the masses of the tt -quark pair 

tAH mMM )( ,then they can decay into the real and virtual top quarks: 

,)( *  WbtttAH  

.)( *  WbtttAH
 

The decay of  WbtФ  (where ɇФ   or А ) is described by the Feynman diagram shown in Fig.7. In the 

MSSM, the matrix element corresponding to this diagram can be written as: 

 

)(
22

)( *
kU

g
gWbtM w

tt 
  )],()1(
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ˆˆˆ),([ 22522
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11 sp
immpp

mpp
Ospu

ttt

t   



, (23)     

 

where )(*
kU   is the 4-vector polarization of the 


W − boson, wg  is the interaction constant of the W boson with the 

quark pair bt , related to the Fermi constant by the relation 

28 2

F

w

w G

M

g
 , t  is the decay width of the t -quark, аnd the 

matrix Ô  depends on the scalarity or pseudoscalarity of Ф -boson: 

for ɇФ   the Ô  is the identity matrix ( IO ˆ ), and in the case АФ  the  Ô . 

  
Ф(p)

t(p ,s )1 1

t (p-p )
*

1

W (k)
-

b(p ,s )2 2  
 

Fig. 7. The Feynman diagram of the decay  Wbt  

 

After squaring the amplitude of the process  Wbt  we will have: 
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where the notations are introduced: 
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G − is the W  boson tensor arising when summing over the polarization states of the vector boson  

 


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wpol M
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 )()(* ,                                                             (25) 

 

and )(  WbtI is the quark tensor, which is given in Appendix А . 

The product of the  W -boson and quark tensors G )(  WbtI  is given in Appendix В . 

The width of the Higgs boson decay of the  Wbt  channel is expressed by the formula  

 

.)(
2)2(2)2(2)2(

)(
2

)2(
)( 213

2

3

1

3

2
4

kppp
E

pd

E

pd

E

kd
WbtM

M
Wbtd

btw

 



 


 

  (26)              

 

We define the quark spectrum in the case of the production of a longitudinally polarized t -quark . For this, we 

must take the integral over the phase volume of the vector W -boson. Then the expression for the decay width will have 

the form: 
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where the bar over the square of the matrix element means that  is summed over the polarizations of the b  - antiquark. 

Integrating now over the emission angles of t - and b -quarks, for the decay width  Wbt we obtain 

expression: 
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the width of the decay  Wbt  at the creation of polarized quarks,   is helicity of the t -quark, аnd tP  is its 

degree of longitudinal polarization 




f

f
Pt ,                                                                                    (30) 

 

the functions f  and f  are obtained from the product of the G )(  WbtI , tensors given in Appendix В .In 

the decay of the scalar boson 
 Wbtɇ the functions are equal to: 
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In the decay of the pseudoscalar boson  WbtА  these functions are given by expressions: 
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Figure 8 shows the dependence of the longitudinal polarization degree of the t -quark on the scaling energy tx at 

ФɆ GeV,  ,bx
 
and  .wɆ GeV. As follows from the figure, with increasing t -quark energy, the 

degree of its longitudinal polarization in  Wbtɇ  decay decreases, and in the decay of  WbtА
increases. 

 
 

Fig. 8. Energy dependence of the degree of longitudinal polarization of the t -quark 
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5. THE DECAY OF 
  WbbH  

 

 If the mass of the charged Higgs boson is btH
mmM  , then the decay of this boson into a virtual t -quark 

and the real b - antiquark is possible, аnd t -quark can decay into a 
W  vector boson and b  is a quark. Thus, one of 

the possible decays of a charged Higgs boson is the   WbbtbH
*  process. This decay is described by the 

Feynman diagram shown in Fig. 9. 

  
H (p)+

b(p )2

t (p +k)
*

1

W (k)
+

b(p )1  
 

Fig. 9. The Feynman diagram of   WbbH  decay. 

 

The matrix element of the decay    WbbH  can be represented in the form: 
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On the basis of this matrix element for the width of the   WbbH decay, we have expression: 
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Here x  and x  are the scaling energies of the quark b  and antiquark b , аnd tr , br  and wr  are given above. 

If the mass of a charged Higgs boson is ɇɆ  GeV, then b -quark mass bт  can be neglected in the decay 

width (34). In this case, the width of the   WbbH decay is greatly simplified: 
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 Integrating this expression with respect to the variables x and x , for the total decay width   WbbH  

we obtain the expression: 
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This expression of the decay width is valid for a mass of a charged Higgs boson tbtH
mmM  . 

Fig.10 illustrates the dependence of the decay width )(   WbbH  on the mass of Higgs the boson 
H

M . It is 

evident that with an increase in the mass of the charged Higgs boson, the width of its decay along the channel 
  WbbtbH

*
 increases from 5.838 MeV to 6.415 MeV, and then monotonically decreases to 0.675 MeV. 

 

 
 

Fig. 10.  The dependence of the decay width   WbbH  on the mass 
H

M
 

  

 CONCLUSION. 

 

Within the framework of the MSSM, we discussed the decays of neutral and charged Higgs bosons into polarized 

fermions: ffАɇh );( , ffH 
, 

 WbtAH )(  and 
  Wbbɇ . Analytical 

expressions for the widths of these decays are obtained, transverse spin asymmetries and the degree of longitudinal 

polarization of fermions are determined. The dependence of the asymmetries and the widths of the decays on the mass 

of the Higgs bosons are studied. Numerical calculations are presented in the form of graphs for the decay channels 

ttАɇ )( , btH  ,  WbtAH )( and   Wbbɇ . 

 

APPENDIX А  

 

Here we give the quark tensor expression in 
 Wbtɇ  and 

 WbtА  decays. 

In the decay of 
 Wbtɇ  

 

 
 ),)[(4(2]),(),][(2)[(4)( 21

22

22

2

1 ppMmspmppmppWbtɇI Htbt  
 

 ]2)(2[2]),(),)[((4]),( 22

222121 tHtbtb mMppmspmppspmspm   

];),(),)[((8]),(),[( 121212121  psmspppmssmps btb 
 

 

In the decay of  WbtА  
 

  ]),(),[(2]),(),)[((4)( 2121

2

221  spmppMspmppppWbtАI bAb  
 

].),(),[(4]),(),)[((4 2121

3

221  ssmpsmspmppspm btbt 
 

 

We note that ),( cb  denotes a brief notation of the tensor 

 

 gcbbccbcb )(),(  , 

 

where b and c are arbitrary 4-particle vectors. 
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APPENDIX В  

Consider the product of the tensor  
2

wM

kk
gG


 

 

on the tenzor 

 gpppppppp )(),( 2222  : 

 )(4)()(])([)( 2222222
ppppppgpppppp

M

kk
g

w




  

 )())((
2

)(2)]())(())([(
1

22222

2

222
ppkpkp

M
ppppkkpkpkpkp

M ww

 

))((
2

)( 222 kpkp
M

pp
w

 . 

As a result, for the product of G )(  WbtɇI tensors in the decay  Wbtɇ  we obtain : 

 

G   )4(2)]()[(]2)[(4)( 22

22

2

1 Htbt MmspmppmppWbtɇI  
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22
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 ))(4(2)](2)[(4{
2

)]())[((8 1

222

1212221 pkMmpkmpp
M
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)]()[()})((8)](2)(2[2))((4 22111

22

11 skmpkskppmskmMppmpkspm bttHtt  ; 

 

In the decay of a pseudoscalar А − boson the product of these tensors is given by: 

 

G   )]()[(2)]()[()(4)( 2121

2
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2

)]()[(4)]())[((4 1

2

122121
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3
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_____________________________ 
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The main purpose of this paper was using of CNTs as an intermediate layer between sapphire substrate and GaN structures. 

Therefore, the MWCNTs were deposited on the sapphire substrate with the synthesis of carbon nanotubes done by the aerosol-CVD 

method. The optimal growth regime was determined from the characterization of CNTs by Raman, SEM and TEM investigations. 

The investigations showed that the MWCNTs were grown on the substrate horizontally. The inside of tubes was predominantly 

empty with some of them containing Fe in the tip or on some parts of the walls. The external diameters of the MWCNTs were 25-35 

nm.  

 

Keywords: MWCNTs, sapphire, Aerosol-CVD. 

PACS: 81.07.De; 81.05. Tp; 81.15.Gh 

 

INTRODUCTION 

Applications based on wide bandgap III-V 

compound semiconductors have rapidly developed over 

the last several decades due to the ability to apply these 

semiconductors in high-power, high-frequency electronic 

and optoelectronic devices [1-4]. Nowadays, biosensors 

are becoming most important due to their applications in 

biological and chemical analyses, biomedical, diagnostics, 

clinical detection, food safety industry, and environmental 

monitoring. In recent years III-nitride semiconductors 

have also attracted interest from the scientific community 

for other applications such as gas and biosensors. Due to 

their inherent material properties, such as their thermal 

and chemical stability and biocompatibility, group III-

nitrides are a promising material system for the realization 

of sensitive and stable transducers for biosensor devices. 

GaN based sensors have been started to study over the last 

decade (Luther et al., 1999 and Schalwig et al., 2002) and 

has been studied more and more in recent years [5, 6]. 

These diverse types of biosensors have been actively 

pursued by many researchers, using thermometric, 

piezoelectric, magnetic, and optical transducer approaches 

[7- 9]. The GaN based optical biosensors are regarded as 

a promising future real-time biomedical sensor due to the 

advantages of low temperature drift, low power 

consumption, low cost, visible radiation application, 

nondestructive operation, and fast signal generation and 

reading. Optical biosensors using light absorption of 

biological elements and photodiode detection have been 

reported in several studies. Additionally, chemical and 

other various types of GaN-based (bio)sensors have been 

started to be investigated during the last decade [10, 11]. 

The material is chemically stable and inert and, has good 

optoelectronic properties. GaN also has a large bandgap, 

therefore the highest occupied and lowest unoccupied 

orbitals of many biomolecules match very well with it. 

Taking into consideration all these studies up to now, we 

can say that III-N materials have a great opportunity to 

fabricate various types of next generation biosensors. The 

realization and application of GaInN quantum well 

heterojunctions as optical transducer elements in chemical 

sensing and bio-sensing has begun to be demonstrated by 

many groups since last few years [12-15]. However, large 

differences in fundamental properties such as lattice 

constants and thermal expansion coefficients between 

GaN layer and sapphire substrate generate structural 

defects and high density of threading dislocations (TD) 

that leads to deterioration of optical and structural 

properties. 

Carbon nanotubes (CNTs) are innovative 

nanomaterials due to their high mechanical, thermal and 

electronic properties (mechanical flexibility, extremely 

high intrinsic mobility, high thermal conductivity, high 

elasticity and high optical transmittance) [16-17]. 

Recently, research groups have been analyzing CNTs to 

improve the crystal quality of GaN by applying CNT as 

an intermediate layer between sapphire substrate and GaN 

buffer layers. Therefore high thermal conductivity, high 

elasticity and high optical transmittance properties of 

CNTs make them ideal for electronics devices. In this 

work, we mainly analyses the impact of CNTs to improve 

the crystal quality of the GaN structures.  

 

EXPERIMENT 

The synthesis processes were carried out by 

conventional aerosol-chemical vapor deposition (A-CVD) 

(Fig. 1a) technique (SCIDRE, Germany) which the 

organic hydrocarbon solvents are used as carbon source. 

The investigations of MWCNTs/sapphire sample which is 

grown at optimal growth condition was describe in this 

paper. This work is based on the injection of the 

cyclohexane solution in the reactor as an aerosol and its 

decomposition under high temperature (850ºC). The high 

frequency (7800 kHz) has been fed in by an ultrasonic 

device (transducer) to obtain an aerosol from the 

cyclohexane solutions. Ar/H2 mixture has flowed to the 

system during the synthesis process as a transport gas 

with a total flow ratio 11:1 (constant total flow rate of 

Argon (Ar) 1100 ml/min and the hydrogen (H2) 100 

ml/min. Argon is the main carrier gas, introduced into the 

growth chamber. Hydrogen H2 plays an important role 

since it controls the growth rate. H2 was known to have 

the ability to either accelerate or suppress the formation of 

carbon.  
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In general, the process starts by putting Fe covered 

sapphire substrate in to reactor and the evacuation of the 

air from quartz reactor using Ar flow for 30 min followed 

by heating the reactor to 850 °C. Then the aerosol was 

created from the solution by ultrasonic device with 800 

kHz high frequency and was carried by gases to the 

reactor for CNTs growth. The syntheses proses were 

continued during 10 minutes and after the synthesis, the 

reactor always is cooled down under Ar flow. Firstly, the 

G, D and 2D peaks of the sample was investigated by 

Raman (Fig. 1b).         a )    b) 
 

Fig. 1. A-CVD system and Raman characterization of MWCNTs. 

 

 

RESULTS AND DISCUSSION 

 
The growth of MWCNTs on sapphire mainly studied 

by scanning electron microscope (SEM) (Fig. 2) and 

transmission electron microscope (TEM) (Fig. 3). The 

tubes consist of approximately 25-35 nm diameters. 

Figure 3 gives the Tem images and present (%) 

concentrations of only C, O, and Fe as if silicon were 

absent. Carbon is due to the fact that C surrounds the nano 

particles so that the TEM electron beam passes through 

the C shell as well, which generates the C peak in the 

EDS spectra. The same applies for oxygen. The C 

signal/percentage can also be due to the presence of CFe3 

in the nano particles. 

 

                
 

 
Fig. 2. SEM images of MWCNTs 
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Fig. 3. TEM images and EDS spectra of MWCNTs 
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The problem of component concentration distribution in InSb-GaSb solid solution crystals grown by zone melting method 

using InSb and GaSb seeds is solved in Phann approximation. The component axial concentration profiles in crystals grown in initial 

macro-homogeneous ingots InSb-GaSb with different composition are calculated taking under consideration the complex change of 

GaAs segregation coefficient with molten zone composition. It is shown that results obtained by mathematical modeling define the 

possibilities of zone melting modified method and optimal conditions for growth of InSb-GaSb crystals with given homogeneous and 

alternative compositions.        

 

Keywords: InSb, GaSb, solid solutions, Phann approximation, segregation, molten zone, component distribution.  
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INTRODUCTION 

     

The material obtaining with given component axial 

concentration profile and also the supply of its 

monocrystallinity are the main tasks of growth process of 

semiconductor solid solution bulk crystals from melt.   

InSb-GaSb system takes the special interest in wide 

range of semiconductor solid solutions. The component 

composite of this system is widely used in modern micro- 

and opto-electronic industry. Besides, InSb and GaSb 

totally solving in each other in any ratios in both liquid 

and solid states and form the continuous series of 

exchange solid solutions [1].   

The math task by definition of component 

distribution along InSb-GaSb solid solution single 

crystals grown by zone melting modified method with use 

of seeds from InSb and GaSb is solved in present work in 

Phann approximation. The aim is the establishment of 

possibilities of zone melting method for InSb-GaSb single 

crystal growth with given homogeneous and alternative 

compositions. The tasks by concentration profile 

modeling of such type had been solved earlier for Ge-Si 

crystals and series of semiconductor compounds of A3-

B5 type grown up from the melt by different conservative 

and non-conservative methods [2-9]. The results of these 

works show the well agreement of the theory with 

experiment.        

The conceptual scheme of InSb-GaSb single crystal 

growth by zone melting modified method put in the base 

of math solution of the given task is presented in fig.1. 

The monocrystalline seed (1) from InSb or GaSb (fig.1A) 

is put in the low part of cylindrical type crucible. The 

priori prepared crucibles from InSb (2) and macro-

homogeneous solution InSb-GaSb with the given 

composition are put under the seed. The crucible melting 

(2) from InSb positioned directly under the seed (fig.1 B) 

is carried out in vacuum condition. The temperature in 

boundaries of the melt with the seed and ingot at the 

moment of recrystallization beginning is equal to InSb 

melting temperature. The crystal growth takes place on 

the seed with from the moment of switching mechanism 

of crucible shift relatively the heater and continues up to 

total ingot recrystallization.     

The task of axial component concentration 

distribution along InSb-GaSb crystal grown in above 

mentioned conditions is solved in Phann approximation at 

which the following conditions are carried out [10]: 

diffusion rates of InSb and GaSb components in the melt 

are enough high ones and cause its homogeneity in whole 

volume; component diffusion in solid phase is negligible 

one; crystallization front is plane one; there is the 

equilibrium between liquid and solid phases in 

crystallization front; GaSb segregation coefficient 

changes in dependence on the melt composition in the 

correspondence with phase state equilibrium diagram of 

InSb-GaSb system; thermal expansion or compression of 

the material at phase transitions is negligible; the 

composition of initial polycrystalline ingot InSb-GaSb is 

macro-homogeneous one.     

 

THEORETICAL CALCULATIONS 

 

Let’s introduce the following designations: 0

mV  and 

mV  are molten zone volumes in initial and current 

moments; mic CCC ,,  are concentration parts of 

second component (GaSb) in the crystal, initial 

polycrystalline rod and melt correspondingly; C is 

general concentration part of GaSb atoms in the melt;
0

mC  

is concentration part of GaSb in molten zone in the initial 

moment; cV is the melt volume crystallizing per time 

unit; iV  is the volume of initial ingot InSb-GaSb melting 

per time unit; mc CCK  is GaSb equilibrium 

segregation coefficient; L is general length of rod from 

InSb-GaSb;   is length of material recrystallized part; Z 

is molten zone length. 

Following expressions in these designations are:  

             

;
m

m
V

C
C      

2

m

mmm

V

CVVC

dt

dC  
  and      

tVVVV icmm )(0   (1) 
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Fig.1.   The conceptual scheme of InSb-GaSb solid solution single crystals growth by zone melting modified method. A is order of 

crucible loading; 1, 2 are seed and rod from InSb; 3 is macro-homogeneous rod of InSb-GaSb given composition; ȼ is 

crystallization starting point; 4 is heater; 5 is melt from InSb; С is moment of final molten zone formation; 6 is InSb-GaSb 

single crystal; 7 is InSb-GaSb melt; L and Z are lengths of given regions. 

 

 

 
 

Fig.2. The calculative axial concentration profiles GaSb in InSb-GaSb single crystals grown by zone melting method. The molten 

zone length is Z=0.1 L. The composition of initial macro-homogeneous ingots InSb-GaSb: 1 – 20,  2 – 50,  3 – 80  at.% 

GaAs.  

 

 

 



Z.M. ZAKHRABEKOVA, A.I. ALEKPEROV, V.K. KAZIMOVA, G.H. AJDAROV 

40 
By task condition we consider that the melt 

recrystallization rate ( cV ) doesn’t depend on time in 

process of whole technological cycle and Z and iV

parameter values stay unchangeable ones up to the 

moment of final molten zone formation. In this case the 

following equations are equal in region of crucible with 

L-Z length from the seed (fig.1):   

 
0

mm VV   ;   
cim VVC  ;00

            and      

 

KCVCVC mcii 
   

                         (2) 

 

Taking under consideration (2) from equations (1) 

we have the division of alternatives and integration after 

series of transformations:  

                            

 


mC

m

c

mi

m

Z

l

V

tV

KCC

dC

0

0
  (3) 

 

We have from the moment of final molten zone formation 

of Z length: 

 

tVm c

0

m VV    , 
cm VV  , 

cVC  KCm  (4) 

  

Taking under consideration (4) we obtain after series of 

transformations and integration: 

 

 




m

mf

C

C cm

m

mmf

m

tVV

V

kCC

dC

0

0

0

0
ln   (5)

    

Here 
0

mfC  is initial concentration part of GaSb in the melt 

in moment of final molten zone formation. Let’s write the 
equation (5) in the following form designated the length 

and part of melt crystallized part (
0

mc VtV ) in t moment 

by 
*

l  and   symbols correspondingly:   

                                             














 

0

exp1
* mf

m

C

C mm

m

CKC

dC

Z

l

               

(6) 

 

The definition of Zl  and   as mC  function is the 

same as mc CKC   along whole material length treated 

by zone crystallization requires the integral solution in 

equations (3) and (6) in which the segregation coefficient 

of second component (K) depending on mC  is included. 

It is known that K value in InSb-GaSb system changes 

enough difficultly in wide limits in dependence on melt 

composition [1]. This circumstance leads to the necessity 

of calculations of integrals in (3) and (6) by numerical 

method by the way of mc CCK  conjugated values in 

corresponding intervals of mC  change on data of system 

equilibrium phase state diagram.     

The character curves of GaSb concentration 

distribution by solid solution crystal lengths InSb-GaSb 

calculated from equations (3) and (6) and relation 

KCC mc   are presented in fig.2. The calculations are 

carried out for three different values Сi  (х=0.2; 0.5; 0.8) 

of InSb-GaSb initial ingot at molten zone length Z=0,1L.  

As it is seen from fig.2, GaSb concentration in initial part 

of all crystals increases on the length from zero up to 

corresponding value Сi of initial homogeneous ingot 

InSb-GaSb. Further, Сɫ value with crystal growth stays 

constant up to final zone formation by length Z=0.1 L. In 

this part of ingot GaAs concentration begins to decrease 

with l increase and tends to zero at l=L. The length of 

initial part with GaSb increasing concentration and final 

one with GaSb decreasing concentration is similar for all 

samples and is equal to molten zone length Z=0.1 L. Note 

that the enough strong increase of GaSb concentration in 

these parts of all ingots which causes the big output of 

solid solution single crystals with homogeneous 

composition is of great interest.  

 

CONCLUSION 

 

The curve family (fig.2) demonstrates the potential 

and availability of zone melting method for growing of 

InSb-GaSb solid solution single crystals with given 

homogeneous and alternative compositions. Summarizing 

the above mentioned one can state the following. The 

mathematical modeling of component axial concentration 

distribution along InSb-GaSb crystals grown up by zone 

melting method with use of seeds from InSb and GaSb 

allows us to estimate the optimal technological 

parameters for single crystal obtaining of this system with 

given distribution and component concentration.     
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The superconducting Bi2Sr2CaCu2OX and Bi2Sr2Ca0.8Zn0.2Cu2OX which was obtained by solid-state synthesis method  was 

investigated. The pinning energy was estimated according the magnetic field dependence of specific resistivity. It was observed that, 

the Zn substitution of Ca leads to increase of the pinning energy. 
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INTRODUCTION 

 

For a wide practical application of superconducting 

materials, it is necessary high critical temperature and 

high conductive capacity. The critical current density is 

one of the critical parameters that limit the existence of 

superconductivity. The study of current transfer processes 

is also of interest from a physical point of view, since it 

allows one to obtain additional information on some 

parameters of the superconducting state. The magnitude 

of the critical current is highly dependent on the 

conditions and technology of manufacturing high-

temperature superconductor [1-8]. 

In superconductors of the second kind, the pinning 

effect plays a large role. The values of the critical current 

density (jc) in second-type superconducting materials are 

directly dependent on the ability to move vortices and 

pinning centers. Pinning flow is always enhanced with 

increasing sample heterogeneity [8-13]. In the case of Bi-

based HTSCs, it can be assumed that such centers may be 

phase boundaries, superstoichiometric concentrations of 

Ca and Cu, and others impurities [2,4,5,11].  

In the present work we analyzed the pinning energy 

of Bi2Sr2CaCu2OX and Bi2Sr2Ca0.8Zn0.2Cu2OX 
polycrystalline samples. 

 

 

EXPERIMENTAL RESULTS AND THEIR 

DISCUSSION 

 
The investigated Bi2Sr2CaCu2OX and 

Bi2Sr2Ca0.8Zn0.2Cu2OX was synthesized by solid-state 

synthesis method. Samples were prepared from 

stoichiometric amounts of high-purity Bi2O3, CaCO3, 

SrCO3, ZnO and CuO powders. First, refractory 

components (CaCO3, SrCO3, and CuO) taken in a desired 

proportion were sintered at 1173-1243K for 20-50 h and 

then Bi2O3 and ZnO were added. The solid state reaction 

of the mixed and pressed powders was performed at 

1100-1135K in air for 50h applying intermediate 

grindings. Cooling was carried out with a rate of 

1.5
0
C/min.  

The phase purity of the obtained samples was 

investigated by X-ray analyses. The XRD analysis was 

performed using a Brucker -D8 advance diffractometer at 

room temperature. The X-ray diffractogram of 

Bi2Sr2CaCu2OX, Bi2Sr2Ca0.8Zn0.2Cu2OX are shown in 

fig.1. According the x-ray data Bi2Sr2CaCu2OX and 

Bi2Sr2Ca0,8Zn0,2Cu2OX can be called single phase. One 

can see from fig.1, the additional peaks are observed for 

the Zn-doped compound. From the XRD data, various 

structural characteristics such as, lattice parameter: 

а=5,396; b=5,395; ɫ=30,643, V=892.06 Ǻ3
, system-

orthorhombic, space group Pnnn for Bi2Sr2CaCu2OX and 

Bi2Sr2Ca0,8Zn0,2Cu2OX were deduced. 

 

 
 

Fig. 1. The X-ray diffractogram of Bi2Sr2CaCu2OX, Bi2Sr2Ca0.8Zn0.2Cu2OX. 
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To calculate the pinning energy, we used the 

temperature dependences of the resistivity at various 

values of the magnetic field [14]. 

Figure 1 shows the dependence of the activation 

energy Up on the external magnetic field for the 

investigated samples.  

At present, the nature of pinning centers in HTSCs 

has not been finally established, but it is clear that the 

relatively weak pinning of vortexes in these materials is 

due to the low energy Up of the fluxoid bond at the 

pinning center due to the small coherence length ξ. It is 

known that pinning is most effective in a separate vortex 

line [8,9,11]. Pinning flow is always enhanced with 

increasing sample heterogeneity. In this case, the 

replacement of the element of calcium by zinc leads to the 

formation of defects in the crystal structure. The result is 

an increase in pinning energy.  

To evaluate U0, you can use the expression [10,11] 

 

BВU c 0

2

0             (1)          

                                                        

where Bc is a thermodynamic critical field, 0  - flow 

quantum( 0 =2.07.10
-15

Tl.m
2
), β = 1 is the number 

coefficient. As can be seen from (1), a decrease in ξ leads 

to a drop in U0. 

As can be seen, to determine the pinning energy, it is 

necessary to know the upper critical magnetic fields and 

the coherence length. The upper critical magnetic fields 

and the coherence length values were experimentally 

determined from the dependence of the resistance on the 

magnetic field [5,14]. In the low-temperature region of 

the resistive transition to the superconducting state, the 

pinning energy of Abrikosov vortices Up is significantly 

higher than the thermal energy (Up >> kT). In this region, 

the resistance is determined by thermally activated motion 

of the magnetic flux and is expressed by the well-known 

Arrhenius law [6-8]. 

 𝜌 = 𝜌0 ∙ 𝑒𝑥𝑝  − 0ܷ 𝑘𝐵ܶ           (2)                                      

 

The pinning energy Up was calculated for fixed 

magnetic fields from the slope of the linear sections of the 

dependences ln (/0) = f(1/T). The obtained values of Up 

for investigated samples are presented in fiq.1.  

As can be seen from fig.1, the pinning energy 

decreases with increasing magnetic field in investigated 

samples. Note that the rate of decrease in the activation 

energy Up(B) also slows down. Apparently, this 

dependence Up(B) is caused by the saturation of the 

activation energy in strong fields and at low temperatures, 

where the effects of magnetic flux movement become less 

significant. As can be seen, U0 for the sample 

Bi2Sr2Ca0.8Zn0.2Cu2OX (with the addition of Zn element) 

is higher than in the Bi2Sr2CaCu2OX. In our opinion, this 

is due to the different nature of the pinning centers in 

these materials: point defects, the presence of other 

phases. Structural defects that occur in complex HTSC 

materials serve as an effective pinning center for magnetic 

flux lines [12]. The presence of impurities and phases in 

HTSCs leads to a local decrease in the Gibbs free energy 

of vortex lines. If these defects can lead to a change in the 

superconducting order parameter, then the flux lines will 

pinning efficiently. The degree of variation of the 

superconducting order parameter is approximately equal 

to the radius of the normal part of the vortices, or the 

coherence length. Therefore, in order to understand the 

effect of pinning flow lines, it is very important to know 

the coherence length with respect to the sizes of defects. 

These intrinsic superconducting properties can be 

determined from measurements of the temperature 

dependence of the second critical magnetic field. 
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Fig. 2. The magnetic field dependence of pinning energy of  Bi2Sr2CaCu2OX (1) and Bi2Sr2Ca0.8Zn0.2Cu2OX(2) 
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The replacement of Ca with Zn leads to the 

formation of defects in the crystal structure of the sample. 

Moreover the resistance of the samples may increase 

either by increasing the number of defects or by 

decreasing the density of charge carriers. It is possible 

that in this case both mechanisms take place. The defects 

in the crystal structure as a result of the introduction of 

the element Zn, lead to additional pinning centers. And 

this in turn increases the pinning energy of the whole in 

the sample.  

Note that when replacing calcium with zinc, the 

lattice parameter decreases. This is due to the fact that 

zinc has a smaller ionic radius than calcium (1.04 Å and 
0.83 Å, respectively). In this case the crystal structure 
deforms, similar to that arising under external pressure, as 

a result of which the lattice parameter decreases. 

CONCLUSION 

 

The replacement of Ca with Zn leads to the 

formation of defects in the crystal structure of the 

superconducting Bi2Sr2Ca0.8Zn0.2Cu2OX. The pinning 

energy was estimated according the magnetic field 

dependence of specific resistivity. It was observed that, 

the Zn substitution of Ca leads to increase of pinning 

energy. 

 

This work was supported by the Science 

Development Foundation under the President of the 

Republic of Azerbaijan- Grant № EIF-2013-9(15)-

46/08/1. 

_______________________________________ 

 

[1] I. Askerzade, Unconventional Superconductors: 

Anisotropy and Multiband Effects, Springer, Berlin, 

Heidelberg, (2012). 

[2] S.I. Bondarenko, V.P. Koverya, A.V. Krevsun, and 

S.I. Link. High-temperature superconductors of 

family (RE)Ba2Cu3O7–δ and their application 

(Review Article), FNT, v.43, №10, p.1411-1445, 

(2017). 

[3] S.S. Ragimov, I.N. Askerzade. Thermoelectromotive 

force in  Bi2Sr2Ca2Cu4O11 bismuth-based high-

temperature superconductor, Technical Physics 55, 

№10, p.1538-1539, (2010). 

[4] V.A. Alekseev, V.A. Karetnikov, D.A. Lapshin et.all., 

The influence of synthesis technology of Bi-Pb-Sr-

Ca-Cu-O ceramics on the superconducting 

properties, Superconductivity: physics, chemistry, 

technical v.3, №8, ɫ.1678-1684, (1990). 

[5] S.S. Ragimov, A.A. Saddinova, V.M. Aliev, R.I. 

Selim-zade. The influence of fluctuations on the 

superconducting properties of Bi2Sr2Ca0.6Zn0.4Cu2OX 

and Bi2Sr2Ca1Cu2OX, Materials Science Forum, v. 

845, p. 17-20, (2016). 

[6] M. Pekala, H. Boigrine and M, Ausloss. Electrical 

and thermomagnetic effects in 

Bi1,7Pb0,3Sr2Ca2Cu3O10 superconducting ceramics, 
J.Phys.Condens.Matter., №7, p.5607-5621, (1995). 

[7] M. Pekala, K. Kitazava, A. Polaczek et al. 

Anisotropy thermoelectric power and thermal 

conductivity in superconducting single crystals Bi-

Ca-Cu-O, Solid State Communations, , v.76, №3, 
p.419-421, (1990). 

[8] A.I. Ponomarev, K.R. Krilov, N.V. Mushnikov et all., 

Paraconductivity, critical fields and activasion 

energy in  Bi2Sr2CaCu2O8+X ceramics,  

Superconductivity: physics, chemistry, technical v.5, 

№12, p. 2259-2271, (1992). 

[9] U. Welp, W. Kwok, G. Grabtree et al., Magnetic 

measurements of the upper critical field of 

YBa2Cu3O7-X single crustals, Physical Review 

Letters, v.62, №16, p.1908-1911, (1989). 

[10] N.R. Werthamer, E. Helfand, P.C. Hohenberg. 
Temperature and Purity Dependence of the 

Superconducting Critical Field, Hc2. III. Electron 

Spin and Spin-Orbit Effects, Phys.Rew., v.147, No1, 

p.295-302, (1966). 

[11] E.A. Pashichkiy, V.I. Vakaryuk. Pinning Abrikosov 

vortices on dislocations and critical current in high-

temperature superconductors, FNT, ɬ.28, №1, p.16-

23, (2002).  

[12] M. Lan, J. Liu, Y. Jia et al. Resistivity and upper 

critical field of YBa2Cu3-XFeXO7-Y single crystals, 

Physical Review B, 1993, v.47, №1 p.457-462. 

[13] A.V. Samochvalov, A.S. Melnikov. Microscopic 

theory of pinning multi-quantum swirl in cylindrical 

cavity, JETP, Vol. 126, No 2, (2018). 

[14] S.S. Ragimov, G.I. Agayeva. The magnetic field 

influence on the specific resistivity of 

Bi2Sr2CaCu2OX film in the superconducting 

transition region, Transactions of Azerbaijan 

National Academy of Sciences, physics and 

astronomy v. XXXVШ, № 5 p.96-99, (2018). 

 

 

Recevied: 26.10.2018 

 

 

 

 

javascript:void(0)
javascript:void(0)


AJP FİZİKA                                               2018                               volume XXIV №4, section: En 

45 131 H.Javid ave, AZ-1143, Baku 

ANAS, G.M.Abdullayev Institute of Physics 

E-mail: jophphysics@gmail.com 

 

REVIEW OF INTERACTION CONSTANT OF VECTOR MESON-NUCLEON IN THE 

FRAMEWORK OF AdS/QCD HARD WALL MODEL 

 

Sh. MAMMADOV, Sh. TAGIYEVA 

Instittute of Physical Problems and Theoretica Physics Department, Baku State University, 

Z.Khalilov str.,23, 1048,Baku, Azerbaijan 

e-mail: sh.mamedov62@gmail.com, shahnaz.ilqarzadeh.92@mail.ru 

 
In the framework of AdS/QCD hard wall model  meson-nucleon interaction constant is calculated by us. Langrangian 

interaction is used between spinor, vector and pseudo-scalar fields in the internal part of AdS space. Using AdS/QCD correspondence 

principle the integral expression for meson-nucleon interaction constant is obtained and its numerical value is calculated.          
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INTRODUCTION 

 

Last time the study of elementary cells in AdS/QCD 

models presents the big inteterst in theoretical physics. 

The AdS/QST duality idea is formed from 

supersymmetric theory. The supersymmetric theory 

combines 4 fundamental interactions: gravitational, 

electromagnetic, weak and strong ones. This duality 

requires the equivalence of 2 below mentioned theories: 

the theory of 4-dimensional calibration and the theory of 

5-dimensional AdS space-gravitation.  

Gauge theory describes the other interaction forces: 

electromagnetic, weak and strong ones excluding the 

gravitation forces. For example, U(1) electromagnetic and 

SU(3) strong interactions are described by Gauge theory 

(this theory is called quantum chromodynamics, QCD).     

 De-Sitter space is the solution of constant positive 

Einstein curve. AdS (anti- De-Sitter space) is constant 

negative curve of time space. AdS/QST compatibility 

forms the connection between 4- and 5-dimensional 

physics. This theory is callede gollographic one.  

 The interaction of elementary cells is calculated by 

2 AdS/QST models. The hard wall model in this model 

sets the boundary conditions at the points 0 and zm at z 

spatial variable and thus, the theory in limit region is 

established.   

  The additional region called Dilaton D(z)=𝜆ଶ𝑧ଶ 

multiplied on ݁𝐷ሺ𝑧ሻ Langrangian limit is added to soft 

wall model.  

The meson-nucleon interaction is studied in this 

article on the base of AdS/QCD hard wall model. This 

problem has been considered in the previous articles 

[4,7,8]. However, the gluon condensate in these cases 

isn’t considered in 𝑋 pseudoscalar region. The constant 

coefficient ߩ𝑁𝑁 defined in the work [1] is recalculated by 

X field application. 

 

HARD WALL MODEL 

 

The interaction expression in hard wall model is 

given bellow and changes in interval:  

            

           ܵ𝑞/௧ሺܸሺݍ, 𝑧ሻሻ = ∫ ݀ସ𝑥 ݀𝑧√݃ ℒ𝑞/௧               (1) 

 

g=|݀݁݃ݐெே| (M,N =0,1,2,3,5) changes at interval     

0≤z≤zm .  ℒ𝑞/௧ is Langrangian interaction between vector 

and fermionic fields inside AdS space. AdS space metric 

is given in Poincare coordinates:    

ଶݏ݀   = ͳ𝑧ଶ (−݀𝑧ଶ + 𝜂µఔ݀𝑥µ݀𝑥ఔ) 

 

µ𝞶  is 4D Minkovski metric   

 

µ𝞶 = diag(1,-1,-1,-1). 

 

The pseudoscalar field X is added in theory of 

golographic duality inside AdS space SU(2)L×SU(2)R 

besides vector and fermionic fields with the aim of 

providing of chiral symmetry breakaging by Higgz 

mechanism.    ܵହ𝐷 = ∫ ݀ସ𝑥 ∫ ݀𝑧 𝐷𝑋|ଶ|]ݎܶ ܩ√ + ͵𝑋ଶሻ] 
Here,|𝐷𝑋|ଶ = ሺ𝐷ெ𝑋ሻ†ሺ𝐷ெ𝑋ሻ,  𝐷ெ𝑋 is covariant 

variative and is defined by following way:    𝐷ெ𝑋 = 𝜕ெ𝑋 − 𝑖𝐿ெ𝑋 + 𝑖ܴெ𝑋. 

The asymptotic solution for X in 𝑧 → Ͳ value is 

given below:  

                    𝑋ሺ𝑧ሻ ≈ ଵଶ ܽ𝑚𝑞𝑧 + ଵଶ௔ 𝜎𝑧ଷ =              ሺ𝑧ሻ.              (2)ݒ

Here 𝑚𝑞 and d are quark aggregation and 𝜎 is chiral 

condensate value. 𝑚𝑞 and 𝜎 are fixed in the result of 

solution of ultraviolet and IR limits according to 

pseudoscalar region X. mq = 0.0083 GeV , 𝜎 = (0.213)3 

GeV3 and  ܽ = Nc/ሺʹߨሻ   [1]. 

The following expression:    ଵ݂௅௡ = ܿଵ௡ 𝑧ఱమ ℐଶሺ݌𝑧ሻ,  ଵ݂ோ௡ = ܿଵ௡𝑧ఱమℐଷሺ݌𝑧ሻ,             ଶ݂௅௡ = −ܿଶ௡𝑧ఱమℐଷሺ݌𝑧ሻ,   ଶ݂ோ௡ = ܿଶ௡𝑧ఱమℐଶሺ݌𝑧ሻ.   (3) 

        

is described in work [7] for nucleon profil function in 

hard wall model. In (3) formula the normalization 

constants   

            ∫ 𝑑𝑧𝑧ఱ ଵ݂௅ሺ௡ሻሺ𝑧ሻ ଵ݂௅ሺ௠ሻሺ𝑧ሻ = ௡௠𝑧೘଴ߜ  ,                  (4) 

and in (4) formula the obtained normalization conditions 

are given below:  

                 |ܿଵ,ଶ௡ | = √ଶ𝑧೘ ℐమሺ௠೙𝑧೘ሻ.                             (5) 
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INTERNAL INTERACTION CONSTANT AND g𝞺NN 

MESON-NUCLEON INTERACTION 

 

According to AdS/QSD  the formation inside 4D in 

QSD in functional 5D space AdS5 is defined by following 

way:  

                        ܼ௄𝑋𝐷ሺ ఓܸ଴ሻ = ݁𝑖ௌ𝑞/𝑡ሺ𝑉𝜇ሺ𝑞,𝑧ሻሻ                      (6)         

Here ܸ̃ఓ଴ሺݍ, 𝑧ሻ is vector field in 5D AdS space; 

 ܸ̃ఓ଴ = ܸ̃ఓሺݍ, 𝑧 = Ͳሻ = ఓܸሺݍሻ 

is 5D space value ܸ̃ఓ଴ሺݍ, 𝑧ሻ = ఓܸ଴ሺݍሻܸሺݍ, 𝑧ሻ of ሺܸሺݍ, 𝑧 =Ͳሻ = ͳሻ vector field. By other hand, it is known that AdS 

functionality of 4D vector current converter for nucleons 

in space boundary is equal to functional converter 

according vacuum unite of 4D field in ultraviolet 

boundary. 

                     < 𝐽ఓ >= −𝑖 𝛿௓𝐾𝑋𝐷𝛿𝑉𝜇0 |𝑉𝜇0=଴                            (7) 

Here  𝐽ఓ being the vector current for nucleons at ߩ meson-

nucleon interaction is expressed by following way (8): 

                       𝐽ఓሺ݌′, ሻ݌ = ݃𝜌ேே̅ݑሺ݌′ሻߛఓݑሺ݌ሻ                    (8)      

  

ܸ̃ఓ଴ is current source for 𝐽ఓ. The bond of impulse 

conservation energy: ݍ = ′݌ −  .is between 4D impulses ݌ 

Here ݌′ and ݌ are impulses before and after interaction 

between spinor and vector fields inside AdS space. ݌′ and ݌ are impulses of initial and final 4D nucleon in QSD 

theory. 5D interaction (1) characterizing the interaction 

between vector and fermion fields inside AdS space is 

used for calculation of interaction ߩ𝑁𝑁 constant meson-

nucleon. The expression of Langrangian interaction in an 

unfolded form should be given in (1). The given 

Langrangian expression is obtained according to 

calibration invariancy of the model used by us.                 ℒ𝜌ேேሺ଴ሻ = 𝑁̅ଵ ஺݁ெ𝛤஺ ெܸ𝑁ଵ + 𝑁̅ଶ ஺݁ெ𝛤஺ ெܸ𝑁ଶ.           (9) 

Here, 𝑁ଵ and 𝑁ଶ are 5D Dirac fermion fields and take 

under consideration the ܷܵሺʹሻ௅ × ܷܵሺʹሻோ chiral 

calibration group, they transform into (2,1) and (1,2). ஺݁ெ 

being Weylbeyn transition from curvilinear space to 

rectilinear one, is defined by ݁ெ஺ = ଵ𝑧 𝜂ெ஺ .  ெܸ defines the 

vector field and  𝛤஺ being the matrix of 5D Dirak fermion 

field, is defined by  𝛤஺ = ሺߛఓ , −𝑖ߛହሻ.  𝛤ହ = −𝑖ߛହ = ቀ−𝑖 ͲͲ 𝑖 ቁ, 𝛤଴ = ቀ Ͳ −ͳ−ͳ Ͳ ቁ, 𝛤𝑖 = ( Ͳ 𝜎𝑖−𝜎𝑖 Ͳ ), (i=1,2,3). 

Taking under consideration the current expression in (8), Langrangian interaction in (9) gives to the constant of  ݃𝜌ேே  

meson-nucleon vector the following formula:  

                                                       ݃𝜌ேேሺ଴ሻ௡௠ = ∫ 𝑑𝑧𝑧ర𝑧೘଴ ଴ܸሺ𝑧ሻ ቀ ଵ݂௅ሺ௡ሻ∗ሺ𝑧ሻ ଵ݂௅ሺ௠ሻሺ𝑧ሻ + ଶ݂௅ሺ௡ሻ∗ሺ𝑧ሻ ଶ݂௅ሺ௠ሻሺ𝑧ሻቁ.                               (10) 

 ଴ܸሺ𝑧ሻ = ሺ𝑘𝑧ሻଶ√ʹ𝐿଴ሺଵሻሺ𝑘ଶ𝑧ଶሻ is profile function of 

Caluza-Klein mode vector field, ଵ݂௅ሺ௡ሻ ݒə ଵ݂ோሺ௠ሻ
 are nucleon 

profile functions. The profile functions for nucleons have 

been already given in equation (3). The spinors inside 5D 

AdS space have the magnetic moment. By this reason, 

they interact with vector field with the help of magnetic 

moment. According to this interaction, Langrangian is 

obtained by 4D theory and has the following form:   ℒ𝐹ேேሺଵሻ = 𝑖𝑘ଵ ஺݁ெ݁஻ேሺ𝑁̅ଵ𝛤஺஻ሺܨ௅ሻெே 𝑁ଵ − 𝑁̅ଶ𝛤஺஻ሺܨோሻெே𝑁ଶሻ  (11) 

Here, 𝑖 is a complex unit, 𝑘ଵ is constant coefficient, ஺݁ெ 

and ݁஻ே being вeing Weyl bey transition from curvilinear 

space to rectilinear one, is defined by ݁ெ஺ = ଵ𝑧 𝜂ெ஺ .           𝑁ଵ and 𝑁ଶ are 5D Dirac fermion fields. 𝛤ெேܨெே matrixes 

consist of the sum of two boundaries F5vF5v  and 𝛤µ𝑣ܨµ𝑣 . 

Using Langrangian interaction 𝐿𝐹ேேሺଵሻ
, gives to the constant 

of  ݃𝜌ேே  meson-nucleon vector the following formula:     

 

 ݃𝜌ேேሺଵሻ௡௠ = −ʹ ∫ 𝑑𝑧𝑧య  ݁−𝑘మ𝑧మ∞଴ ଴ܸ̀ሺ𝑧ሻ[𝑘ଵ ( ଵ݂௅ሺ௡ሻ∗ሺ𝑧ሻ ଵ݂௅ሺ௠ሻሺ𝑧ሻ − ଶ݂௅ሺ௡ሻ∗ሺ𝑧ሻ ଶ݂௅ሺ௠ሻሺ𝑧ሻ)   +𝑘ଶ ݒሺ𝑧ሻ ( ଵ݂௅ሺ௡ሻ∗ሺ𝑧ሻ ଶ݂௅ሺ௠ሻሺ𝑧ሻ + ଶ݂௅ሺ௡ሻ∗ሺ𝑧ሻ ଵ݂௅ሺ௠ሻሺ𝑧ሻ)].                          
(12) 

 

NUMERICAL CALCULATIONS 

 

Thus, two integral expressions (10) and (12) are 

obtained in AdS/QSD hard wall model for ݃𝜌ேே  

interaction constant of ߩ meson-nucleon. The final 

interaction constant is the sum of two expressions:  

                      ݃𝜌ேே௦.𝑑. = ݃𝜌ேேሺ଴ሻ௡௠ + ݃𝜌ேேሺଵሻ௡௠
.                       (13) 

The unit calculations (13) are calculated with the 

help of MATHEMATICA program. ܽ = Ͳ.ʹ757 is 

calculated for A constant in SU(2) symmetry. The 

following units:  𝑚௡=0.94 ሺܸ݁ܩሻ, σ =(0.213)3 GeV3, 

mq=0.0083 GeV,  k1=-0.98 GeV3 , 𝑘ଶ = Ͳ.5 ܸ݁ܩଷare used 

for parameter sum. Taking under consideration these 

constant values we obtain the final calculation ݃𝜌ேே௦.𝑑. =0,078. 
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